[bookmark: _GoBack]Bioinformatics Workflow

Image Acquisition:

Generally scanning laser confocal (Zeiss LSM 710) with resolution set to 1.7X Nyquist Rate (http://www.svi.nl/NyquistCalculator)

For example, using 20X 0.8 NA objective with excitation wavelength 488 (single photon excitation) and emission wavelength 520 with lens refractive index 1.0 (air): Nyquist sampling (x,y,z in nm): 76, 76, 305

With our camera the field size (x,y in um): 425, 425

Image size (x,y in pixels): 425 um / (76 nm * 1.7) = 3289
Step size (z, in nm): 305 nm * 1.7 = 518.5

Images stored in czi format with the particular naming convention: {Base}_{Primer}_{Cycle}_{Date String}.czi

e.g. 2_N_1_2013_10_25__11_57_18.czi

Deconvolution:

Images are lightly deconvoluted in Huygens. Sampling intervals and microscope settings are matched to acquisition parameters.

Deconvolution parameters are set as follows:

Algorithm: Classic MLE
PSF Mode: Theoretical
Max. Iterations: 10
Iteration Mode: Optimized
Quality change thresh (%): 0.1
Signal to Noise Ratio: 2
Background Mode: Auto
Background estimation radius: 0.7
Relative background: 0
Bleaching correction: If possible
Brick mode: Auto

Deconvolved images are saved as .ics/.ids file format.

Maximum Projection & Registration:

A custom Matlab program has been written to automate maximum projection and registration. All images for a certain experiment need to be in the same folder. The Matlab function register_FISSEQ_images_131213.m is called using input_path and output_path arguments.

Example Usage (in Matlab):

input_path = '~/FISSEQ.2013.11.12.RHex.30bp/Deconvolved/';
output_path = '~/FISSEQ.2013.11.12.RHex.30bp/Registered/';
register_FISSEQ_images_131213(input_path,output_path);

Base Calling:

Base Calling and Clustering & Output all happen within a custom Python program. This program requires a very large amount of memory to run because the image data is read entirely into memory and duplicated multiple times during processing. You should use at least 10X as much memory as your total image directory size.

I am using Python version 2.7 with the most recent versions of the following packages:

__future__
numpy
os
re
scipy
datetime
math
collections
time

This code is fairly well annotated. After starting python, you need to import the custom module FISSEQ_131129_P.py. Typically I import this module as F. The base calling function is called ImageData.

Example Usage:

import FISSEQ_131129_P as F
G = F.ImageData(image_directory = '~/FISSEQ.2013.11.12.RHex.30bp/Registered/', read_output = '~/FISSEQ.2013.11.12.RHex.30bp/Reads/', num_bc_thresh = 6)

This will write all reads to a file as long as they have no more than 6 missing base calls. The output looks like this:

Found 150 Images for import in 0.01383 seconds.
Imported Image Stack 3290 x 3288, 30 Bases, 5 Channels in 717.04 seconds.
Images processed into component vectors, base calls, and quality scores in 458.03 seconds.
4729456 reads written to file ~/FISSEQ.2013.11.12.RHex.30bp/Reads/read_data_2013_12_17_00_37.csfasta in 109.77 seconds.

Alignment:

Alignment to a reference is done in Bowtie v1 (http://bowtie-bio.sourceforge.net/index.shtml).

I am aligning the reads to the Refseq mRNA reference (ftp://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/mRNA_Prot/human.rna.fna.gz).

This reference needs to be “built" using the Bowtie command:

bowtie-build -f -C human.rna.fna refseq

The reads can then be aligned using any particular alignment parameters.

Example Usage:

/opt/bowtie/bowtie -C -n 3 -l 15 -e 240 -a -f -p 12 -m 20 --chunkmbs 200 --best --strata refseq ~/FISSEQ.2013.11.12.RHex.30bp/Reads/read_data_2013_12_17_00_37.csfasta ~/FISSEQ.2013.11.12.RHex.30bp/Alignments/alignments_131217_refseq.txt

This will produce an output like this:

reads processed: 4729456
reads with at least one reported alignment: 1684156 (35.61%)
reads that failed to align: 3039199 (64.26%)
reads with alignments suppressed due to -m: 6101 (0.13%)
Reported 3595021 alignments to 1 output stream(s)

Clustering & Output:

Clustering happens in the custom python program again. The clustering program AlignmentData requires as input the ImageData instance.

Example Usage:

import FISSEQ_131129_P as F
G = F.ImageData(image_directory = '~/FISSEQ.2013.11.12.RHex.30bp/Registered/', read_output = '~/FISSEQ.2013.11.12.RHex.30bp/Reads/', num_bc_thresh = 6)
H = F.AlignmentData(bowtie_file = '~/FISSEQ.2013.11.12.RHex.30bp/Alignments/alignments_131217_refseq.txt', dilation_size = 3, imagedata_instance = G)

This will produce an AlignmentData instance that contains all of the cluster objects and alignment data in the entire dataset. Typically in order to process this further in Matlab and R, I will use the StatWriter program, which turns the AlignmentData instance into a series of flat files that contain the raw data as well as summary outputs of gene expression and nucleotide variation.

Example Usage:

import statwriter_5 as sw
ge = sw.sw(H.ClusterData, 5, '~/FISSEQ.2013.11.12.RHex.30bp/Data/data_131218.tsv', '~/FISSEQ.2013.11.12.RHex.30bp/Data/snps_131218.csv', '~/FISSEQ.2013.11.12.RHex.30bp/Data/gene_exp_131218.csv')

Good Luck!!
Evan Daugharthy
1/22/14

Bioinformatics Workflow
e

n..;_..._._.__,w....m-...m.m......

e

A et T

et e, R, P, 5

e
T

