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We propose an assay to detect and quantify alternative splicing simultaneously
for numerous genes in a pool of cellular mRNA. The assay exploits polymerase
colonies, a recently developed method for sampling and amplifying large numbers
of individual transcript molecules into discrete spots on a gel. The proposed as-
say combines the advantages of microarrays for transcript quantitation with the
sensitivity and precision of methods based on counting single transcript molecules.
Given a collection of spots si, each containing an unknown splice variant of some
known gene Gi, we design a series of hybridizations to short oligonucleotide probes
to determine in parallel which exons of Gi are present in every spot si. We give
algorithms to minimize the cost of such designs.

1 Introduction

Alternative splicing of gene transcripts1,2 is believed to be a major mechanism
by which eukaryotes can amplify the number of distinct proteins produced
from a limited number of genes. Estimates of the fraction of alternatively
spliced genes in the human genome range from 20% to nearly 60%3,4. In sev-
eral cases, different splice variants of a gene have been shown to play distinct
or tissue-specific functional roles5,6,7. These facts have driven the development
of assays to discover and quantify alternative splicing.

Quantitative detection of alternative splicing aims to measure, for one or
more genes, the amounts of each splice variant of that gene present in a pool
of RNA. In this work, we focus on splicing events that result in insertion or
deletion of one or more complete exons from a transcript. A gene is treated as
an ordered list of exons G = {E1 . . . En}, with each splice variant containing
a subset of these exons. We seek to determine which subsets of G describe
splice variants present in a sample of mRNA, and to estimate how often each



variant occurs. Although this formulation does not consider variation arising
from alternative exon starts or ends, it does encompass a wide variety of
possible splice variants for a gene.

The amounts of specific splice variants for one or a few genes can be
quantified by, e.g., an rtPCR assay. More challenging, however, is the task of
devising a high-throughput assay to quantify all variants of numerous genes at
once. Historically, high-throughput splicing assays have relied either on count-
ing splicing events in ESTs3,4 or on microarray methods in which each spot
specifically recognizes a sequence arising from a particular splicing event8,9,10.

EST-based methods directly count transcripts and so allow precise quan-
titation of splice variants. Moreover, ESTs can span several exons, so they
can reveal correlations between splicing events involving different cassettes
of exons. However, EST counting requires large-scale DNA sequencing, and
its quantitative accuracy is limited by biases in which transcripts survive the
process of EST library construction. In contrast, array-based methods are
less resource-intensive and require less processing of the sample RNA. How-
ever, the oligonucleotides used on arrays typically target a single boundary
between two exons, so that these methods cannot easily detect correlations in
combinatorial splicing events. Array-based methods also suffer from limited
quantitative accuracy, particularly for rare transcripts.

This work proposes a high-throughput assay to quantitate alternative
splicing using polymerase colonies (“polonies” for short). Polony-based as-
says combine EST counting’s precise quantitation and detection of combina-
torial splicing events with microarray-like RNA preparation, hybridization,
and imaging. A polony gel is a collection of up to ten million spots, each con-
taining many copies of a single transcript molecule sampled randomly from a
pool of RNA. The gene whose transcript gave rise to each spot can rapidly
be determined. Given this information, we show how to design short (7–10
base) oligonucleotide probes to determine which exons are present in each
spot on the gel, and how to pool probes so as to minimize the number of
hybridizations needed for this determination.

The remainder of this work is organized as follows. Section 2 describes
polony technology and proposes our assay to quantify alternative splicing.
Section 3 poses the problem of designing oligonucleotide probes to detect
all splice variants of a set of genes while minimizing the cost of the assay.
Although this problem is combinatorially challenging, we derive a spectrum of
solutions to trade off the costs of oligo synthesis and hybridization. Section 4
evaluates designs from our methodology, and Section 5 concludes.



2 Exon Profiling with a Polony Gel

Polony exon profiling is a single-molecule technology for quantifying alterna-
tively spliced mRNAs11. We first describe the current form of this technology,
which quantifies all isoforms of a single gene. We then suggest an extension to
quantify isoforms of multiple genes, up to an entire genome, in a single assay.

Polony exon profiling includes two steps: amplification and hybridization.
Step 1: Amplification. A dilute cDNA sample is cast into a thin acrylamide
gel attached to a microscope slide. Because the sample is dilute, individual
molecules are well separated from one another on the slide. Next, PCR is per-
formed in the gel, using primers specific to a gene of interest. Single cDNA
molecules are amplified in situ; the acrylamide restricts the diffusion of am-
plification products so that they remain localized near their parent molecules.
Each single cDNA molecule produces a discrete polony containing 106 to 107

identical copies, with each DNA molecule covalently attached12 to the gel.
Over ten million polonies can be amplified on one slide13.
Step 2: Hybridization. The slide is first denatured and washed so that each
polony contains single-stranded DNA. Next, a fluorescently labeled oligonu-
cleotide complementary to the first exon (known or putative) is diffused into
the gel. Only polonies amplified from transcripts containing exon 1 will bind
the oligonucleotide. The slide is imaged using a confocal laser scanner to
identify these polonies. Finally, the gel is prepared for the next round of
hybridization by heating the slide to remove the bound probe. The next hy-
bridization is performed with an oligo complementary to exon 2, and so on
for all exons. To increase efficiency, hybridizations can be multiplexed using
several fluorescent labels.

The outcomes of k successive hybridizations assign each polony a signature
of k bits. Each 1 bit indicates a successful hybridization to the polony, while
each 0 bit indicates absence of hybridization. Each polony’s signature specifies
the exons in one sampled transcript. For example, in Figure 1, the indicated
polony with signature “1100” was amplified from a transcript containing exons
1 and 2 but not exons 3 or 4. The number of polonies with a given signature
is proportional to the number of transcripts of the corresponding isoform in
the sampled RNA. To quantify (up to sampling error) the abundance of each
isoform, we count the number of polonies assigned each signature.

Polony exon profiling has been used to quantify alternative splicing in
several genes, including CD44, a gene with 1,024 potential isoforms11. The
current protocol can realistically be expected to multiplex 10–50 genes, but
further multiplexing is unlikely to be feasible for two reasons. First, multiplex
PCR does not typically scale beyond 30–50 primer pairs per tube; greater mul-



tiplexing tends to cause primer-dimer artifacts and other mispriming events.
Second, the cost of making exon-specific probes for the roughly 30,000 human
genes would be prohibitive. At an average of 8.8 exons per gene14, 264,000
probes would be needed at a cost of roughly $40 per probe.

To address the limits of mul-
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Figure 1. Reading a polony’s signature from suc-
cessive hybridizations against oligos specific to
exons 1–4 of a gene. White/black indicate pos-
itive/negative outcomes. The indicated polony
has signature “1100.”

tiplex PCR and the high cost
of exon-specific probes, we pro-
pose a modified protocol to quan-
tify splice variants of numer-
ous genes simultaneously using
polony technology. Our pro-
posal includes three key changes:
(1) Create cDNA so that (as
in a typical cDNA library) each
transcript is flanked by universal
priming sequences. Polony am-
plification is performed using this
single universal primer pair. Hence, every mRNA molecule on the slide now
produces a polony. (2) Identify the gene present in each polony by sequencing
a few bases from its ends using fluorescent in situ sequencing15. Sequencing
10–12 bases from each end of a polony’s DNA should identify its gene. (3) To
reduce the cost of oligo synthesis, use short (7–10 base) oligo probes. Each
probe is specific to one exon within a single gene but can identify exons in
more than one gene, so many fewer probes than exons are needed.

This revised protocol gives rise to two key computational challenges.
First, we must choose short exon-specific probes for all genes while realiz-
ing the promised savings in synthesis costs. Second, because the probes are
too short to guarantee specificity across genes, we must somehow keep probes
intended for one gene from producing false positive hybridizations to another.
The next section addresses each of these challenges.

3 Distinguishing Splice Variants with Short Oligonucleotides

In this section, we formulate and solve problems arising in the design of short
probes for distinguishing splice variants in a polony assay. We first describe
formal criteria by which to choose probes for one gene, or for multiple genes
simultaneously. We then address the problem of testing all these probes using
as few hybridizations as possible. Finally, we identify a tradeoff between the
size of the probe set and the number of hybridizations needed and show how
to obtain designs that favor one or the other side of this tradeoff.



In what follows, we reduce our problems of interest to two problems known
to be NP-hard. In each case, we have also constructed the opposite reduction
(omitted for space reasons), showing that we have not set ourselves more
difficult tasks than necessary. Also, we select probes directly from the input
sequences, recognizing that the real assay must use their reverse complements.

3.1 Assay Designs with Unique Probes

Let G be a gene consisting of exons E1, E2, . . . , En. A single transcript of G
contains a (nonempty) subset of these exons. We wish to construct a collection
C of oligo probes with common length `, such that hybridizing each probe in
C against a transcript from G unambiguously reveals which exons it contains.

An `-mer probe p is unique to exon Ei if it occurs in every splice variant
of G that contains Ei and in no variant that does not. Given a set of unique
probes p1 . . . pn for each exon of G, we can hybridize each pi in turn against
a transcript of G to determine if it contains exon Ei. This design uses only n
probes, the fewest needed to distinguish all 2n − 1 splice variants.

Although an exon of G is not guaranteed to contain a unique probe, the
following lemma shows how to find such probes when they exist.
Lemma 1. Let p be an `-mer probe occurring as a substring of exon Ei of
gene G. If each exon of G has length at least `, then p is unique to Ei iff (1)
p is not a substring of any other exon Ej of G, j 6= i; and (2) for any pair of
exons Ej and Ek of G, j < k, j, k 6= i, p is not a substring of the concatenated
string Ej · Ek.

Proof. The probe p occurs in any splice variant of G containing Ei. Moreover,
in any splice variant lacking Ei, p cannot occur in any of the remaining exons
(by Condition 1) or at the boundary between two exons (by Condition 2). A
single `-mer cannot span three or more exons if each exon has length ≥ `.
Hence, p is unique to Ei.

Conversely, a probe p that occurs uniquely as a substring of Ei cannot
appear in a transcript containing only Ej , j 6= i (hence Condition 1). More-
over, p cannot appear across an exon boundary in a transcript containing only
exons Ej and Ek, j, k 6= i (hence Condition 2).

Unless an exon is extremely short, unique probes can generally be ob-
tained by choosing long enough `. In practice, setting ` in the range 7–10
yields at least one unique probe (and usually tens of such probes) for well
over 90% of predicted coding exons in the human genome.

While the above design produces probe sets for a single gene, we seek to
test thousands of genes at once. Naively, we could choose probe sets for each



gene independently; however, such a design is wasteful because a single `-mer
can be unique both to (say) exon E5 within gene G1 and to exon E7 within
gene G2. Reusing probes when possible lowers the cost of oligo synthesis. We
therefore consider the following optimization problem:
Problem 1. Let G1 . . . Gm be genes for which we want to distinguish all
possible splice variants. Each gene Gx has exons Ex1 . . . Exnx . For each exon
Exi, let Uxi be the set of all `-mer probes unique to Exi within gene Gx. Find
a set C of `-mer probes of minimum size such that C contains at least one
element of every set Uxi.

A solution to Problem 1 yields a probe set C containing unique probes
for every exon of every Gx. Hence, testing each probe in C is sufficient to
distinguish all splice variants of these genes. If a solution uses probe p to
detect the presence of exon E, we say that p is that solution’s representative
for E. One probe can represent exons of several genes.

Problem 1 is an instance of the hitting set problem16. Hitting set is known
to be NP-hard but can be approximated to within a factor log (maxx,i |Uxi|)
by a greedy algorithm17. A similar combinatorial formulation was used by
Nicodème and Steyaert18 to design multiplex PCR assays. The hitting set
problem generalizes (with comparable approximability) to a variant in which
each Uxi must be hit at least r > 1 times19. We use this extension to design
probe sets with at least r representatives per exon. Using only one representa-
tive per exon provides no way to recover from failed hybridizations that cause
false negative outcomes. In contrast, redundancy ensures multiple chances to
detect an exon if it is present.

3.2 Pooling to Minimize Hybridization Costs

We can naively test each probe in set C by hybridizing it sequentially. Polony
gels can maintain integrity through tens of washings, so sequential hybridiza-
tion steps are possible. However, the assay cost increases with the number of
steps, as does the probability that the gel will tear or detach from the slide.
We therefore ask how few steps are needed to test all probes in C.

The danger of testing two or more probes in one hybridization is that
one probe may prevent another from unambiguously detecting its intended
exon. Figure 2 illustrates this danger in a gene G with exons E1 and E2.
Probe p represents exon E1, while probe q occurs in exon E2 (though it may
not represent E2). If p and q are mixed with the same fluorescent label, the
mixture yields a positive result for variants of G that contain E2 but lack E1,
making p useless for its intended purpose.

We say that a probe p forbids a probe q if (1) p represents exon E of some



gene G; and (2) q occurs in any splice variant of G that lacks E. If p forbids
q or vice versa, we say that p and q conflict. The above example shows that
conflicting probes cannot be pooled in one hybridization. Conversely, if p and
q do not conflict, then for any exon E represented by one probe, the other
probe either does not bind to any variant of E’s gene or binds only to variants
that contain E. Hence, p and q can safely be pooled.

Any number of non-
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Figure 2. Effect of pooling probe p with probe q when
p forbids q. Probe p represents exon E1 and so yields
a positive result iff it is present (left). However, q,
which binds to E2, can cause a false positive result
even if E1 is absent and p does not bind (right).

conflicting probes can be
hybridized in a single ex-
periment. Hence, finding
large non-conflicting sets of
probes reduces the number of
hybridizations needed with-
out compromising correct-
ness. We therefore formulate
the following problem.

Problem 2. Let C be a set of unique probes. Divide C into the fewest possible
disjoint subsets C1 . . . Cz so that no two probes in a subset conflict.

This problem reduces easily to vertex coloring20. Let H be a conflict graph
whose vertices are the probes of C, such that two vertices are connected iff
their probes conflict. In any valid coloring of H, all vertices (probes) of one
color are pairwise non-conflicting and so can safely be pooled. Graph coloring,
like hitting set, is NP-hard. While approximation algorithms results exist for
coloring21, we use less compute-intensive heuristics to color the conflict graph.

3.3 A Tradeoff in Assay Design

We have formulated a two-step process to design high-throughput alternative
splicing assays for polonies: first, select representative probes for all exons
of interest; and second, divide these probes into non-conflicting pools. A
fundamental tradeoff between these two steps arises because assay designs
with fewer probes typically demand more hybridizations.

Consider two probes p and q. As the number of genes with an exon
represented by p increases, so too does the chance that q will appear in one
of these genes, possibly inducing a conflict. Probe selection seeks to cover
all exons with as few probes as possible and so tends to increase the number
of exons represented by each probe. As a result, the number of edges in the
conflict graph H increases, inducing a likely increase in H’s chromatic number
and hence in the number of hybridizations needed.

Ideally, our assay design would optimize a joint cost function f(π, η),



where π is the number of probes and η the number of hybridizations. While
we cannot yet directly optimize such a joint cost, we instead seek a spectrum
of designs that trade off between π and η, then choose the least-cost design.

We produce a spectrum of designs for probe length ` by generalizing probe
selection to weighted hitting set. This problem variant assigns each probe a
weigh and seeks to minimize the total weight of probes chosen. Weighted
hitting set can be approximated within the same bound as the unweighted
version by a modified greedy algorithm22. We will use probe weighting as a
heuristic to select probes that induce fewer conflicts and hence are less likely
to increase the conflict graph’s chromatic number.

For each probe p, we define a conflict weight wc(p). A probe’s conflict
weight estimates how many other probes would forbid p were it chosen as part
of a probe set. We will define wc(p, G), the conflict weight of p versus a single
gene G, and set wc(p) =

∑
G wc(p, G). Suppose G has n exons. Then

wc(p, G) =

 n if p occurs non-uniquely in G
n-1 if p is unique to one exon of G
0 otherwise.

The rationale for this weighting is as follows. Each exon of G must be rep-
resented in the probe set. If p occurs non-uniquely in G, then for each exon
E of G, p occurs in a splice variant of G that lacks E. Hence, as described
in Section 3.2, p cannot be mixed with E’s representative. All n represen-
tatives of G’s exons (whatever they may be) will therefore forbid p. If p is
unique to exon Ei of G, a similar argument shows that p cannot be mixed
with any representative except that for Ei. Hence, p is forbidden by all but
one exon representative for G. Finally, if p never occursa in G, none of the
representatives for G’s exons forbid p.

To vary the extent to which conflict weighting affects the design, we
compute w, the average conflict weight of all candidate probes, and set
w(p) = αw + (1 − α)wc(p) in the hitting set problem. Setting α closer to
0 favors solutions that minimize conflict, while setting it closer to 1 favors
solutions with fewer probes. Of course, our weighting scheme is only heuris-
tic, since (1) it overcounts the number of potential conflicts when probes can
represent more than one exon, and (2) the conflict count is not a perfect pre-
dictor of the conflict graph’s chromatic number. However, the results of the
next section show that conflict weighting is effective in producing a spectrum
of designs that trade off between probe count and number of hybridizations.

aWe have refined wc(p, G) to handle cases when p occurs only at boundaries between exons.



4 Empirical Results

In this section, we describe the empirical properties of our assay designs on
a comprehensive set of genes predicted by the Twinscan program23 on NCBI
release 31 of the human genome. The test set includes 21,845 multi-exon
genes, with an average of 8.5 and a maximum of 80 exons per gene. Although
Twinscan’s predictions are among the most accurate available, they do not
include the difficult-to-predict UTR regions, so the gene sizes and exon counts
in our experiments are slightly reduced compared to the real human genome.

We implemented our own software for greedy probe selection and conflict
graph generation. For coloring, we used an existing implementation of the
DSATUR heuristic24,25. We avoided probes within six bases of an exon boundary
to accommodate small inaccuracies in Twinscan’s exon predictions. When
enumerating `-mers that cross exon boundaries, we considered splice variants
that could link exon Ei with any exon in the range [Ei−5, Ei+5]; however, the
exact set of boundary `-mers considered minimally impacted our designs.

An important first test of design methods using small ` is whether most
exons have unique probes. For ` between 7 and 10, we were assigned 97.5% of
exons at least one unique probe and 97.4% at least two probes. Discounting
initial and terminal exons (which were artificially truncated by Twinscan at
the first and last codons), we assigned two probes to over 99% of exons.

Figure 3A illustrates the range of tradeoffs achieved on the test genes
between probe set size and number of pools, assuming one unique probe per
exon, ` from 7 to 10, and α from 0 to 1 in steps of 0.1. All designs use
many fewer probes than either the number of exons or 4`. Longer probes are
less likely to cause conflicts, so the number of hybridization pools required
decreases as the probe length ` increases.

For each ` ≥ 8, varying the probe weighting permits tradeoffs as described
in Section 3.3. For smaller `, weighting has little effect on the cost of the
solution, perhaps because any solution that hits every exon has close to 4`

probes and hence unavoidably has a high density of conflicts.
Figure 3B extends the assay design to pick at least two unique probes

for every exon. Protection against false negatives increases the number of
required probes by a factor of 2–3. At small probe lengths `, this increase
brings the number of probes much closer to 4`, dramatically increasing the
number of pools required; however, for larger `, the effects of redundancy on
hybridization count are less pronounced.

We now consider the practical utility of our designs. The controlling vari-
able for practicality is likely to be the number of hybridizations, each of which
increases the chance that the gel will tear or detach, ruining the experiment.
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Figure 3. Tradeoffs between number of probes and number of pools. (A) Designs assigning
at least one unique probe per exon. (B) Designs assigning at least two unique probes per
exon to reduce false negatives.

We estimate that realistic assays must use fewer than 100 (preferably fewer
than 50) hybridizations. Assuming four-color probe labeling, designs should
therefore use at most 400 (preferably at most 200) pools. We achieve such
designs for ` ≥ 9 while still using many fewer probes than exons.

To make the abstract cost function of Section 3 concrete, we conclude by
estimating the actual cost of our assay, assuming it can be fully ramped up
to a high-throughput genome-wide survey of alternative splicing. We assume
that $40 will purchase enough of one labeled oligo to test 10,000 gels, and that
a high-throughput survey amortizes this cost over the full 10,000 gels. The
cost per gel is assumed to be the cost of oligos consumed (0.4 cents per probe,
since each probe is used only once per gel) plus roughly $35 for materials,
labor, and machine costs associated with 50 hybridizations. Assuming 45,000
10-mer probes to achieve two unique probes per exon (as in Figure 3B), the
cost per gel is $225. The cost of large-scale polony exon profiling is therefore
competitive with microarray and EST-based methods.

5 Discussion

Polony gel technology provides a cell-free method to probe and count in-
dividual transcripts from a sample of cellular RNA. It avoids most biases
introduced by EST library construction while still yielding a digital readout
that can probe every exon in a transcript. Previous work11 has shown the
feasibility of polony gels for assaying splice variants of one or a few genes, but
we seek to scale the technology to thousands of genes for high-throughput use.



This work computes two key aspects in the design of high-throughput
assays for polony exon profiling: the set of oligonucleotide probes to use, and
their pooling into hybridization experiments. Our methods permit systematic
selection of redundant probes to limit the rate of false negative outcomes.
Our cost estimates show sufficient promise to pursue development of the new
assay, which will entail empirically optimizing both the specificity of the oligos
and the ability of polony gels to withstand large numbers of washings.

Two issues demanding further exploration are the need for full-length
gene predictions and, more generally, the problem of false positives. Full-
length genes are necessary to accurately design probe sets, since unexpected
sequences in a transcript could cause false positive matches to probes. Ac-
curate prediction of exon structure in UTRs is still an open problem, which
means we are unlikely to be able to design probes for many UTR exons. How-
ever, our designs can tolerate some degree of overprediction if the UTRs are
treated as “forbidden” sequences that, while not themselves probed, restrict
the sets of unique probes for the coding exons. We plan to use computational
(over)prediction, especially of 5’ UTRs, combined with EST evidence from
e.g. the NCBI Refseq26 project to estimate UTR boundaries.

More generally, our designs do not yet address the question of false pos-
itive outcomes due to imperfect hybridization. To control this false positive
rate, we plan to more accurately predict binding affinity for probes using
sequence-specific estimates of their melting temperatures Tm. Our definitions
of uniqueness and conflict extend straightforwardly to forbid probes that bind
with too high an affinity as well as those that match a sequence exactly. These
extensions, combined with our existing provisions to reduce false negative out-
comes, will greatly increase our assay’s robustness to real-world variations in
hybridization.
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