[image: image5.png]
Software Documentation

April 2003

Minimization of Metabolic Adjustment (MOMA)

for submission to BioSpice release 3.0
Software developed in the lab of Prof. George Church

Department of Genetics, Harvard Medical School

200 Longwood Avenue, Boston, MA 02115, USA

Based on:

Daniel Segrè, Dennis Vitkup and George Church

Proc. Natl. Acad. Sci. USA (2002), 99(23), 15112-15117

Analysis of optimality in natural and perturbed metabolic networks

OAA adaptation by Wayne Rindone and Peter Kharchenko

OOQP incorporation by Dat Nguyan

http://arep.med.harvard.edu/moma /
MOMA Perl script by Daniel Segrè

OOQP installation by Nat Nguyen

OAA adaptation by Wayne Rindone and Peter Kharchenko

We acknowledge Bernhard Palsson and Jeremy Edwards for their help and for making the E.coli in silico reconstruction available.
Contents:
1 INTRODUCTION

2 OPTIMIZATION IN MOMA

3 INSTALLATION INSTRUCTIONS

4 GRAPHICAL USER INTERFACE

5 INPUT FILES

6 EXAMPLES FOR TESTING

.

1.
INTRODUCTION

Flux balance models of metabolism are becoming increasingly attractive in system biology research. While most whole-cell models aim at a complete dynamic description of molecular processes inside the cell, flux balance methods give up understanding many details of molecular processes, for the benefit of much more tractable and parameter-independent computational representations. The “slice” of biological reality described by a flux balance model is a very good workbench for testing different biological hypotheses, since many of the steady state fluxes that one can predict using in silico models, can also be experimentally measured.

Flux balance models are not a new invention, but the use of complete genomes to study metabolic phenotypes of different organisms is a relatively recent and exciting opportunity, pioneered by Bernhard Palsson and his group (see bibliography below). A particularly valuable application of flux balance models is the systematic study of different perturbations of a metabolic network, for example the analysis of all the networks resulting from knocking out one by one all metabolic genes. Classical flux balance models generally generate predictions by assuming optimality of the metabolic network for a given task. In the attempt to capture the likely suboptimal performance of perturbed systems, our recently proposed method (the minimization of metabolic adjustment) seems especially apt at generating predictions for the perturbed metabolic network.

Here below is a short bibliography of flux balance analysis methods. In particular, reference [1] is recommended as a more detailed explanation of the method of minimization of metabolic adjustment (MOMA), and reference [2] contains a description of flux balance analysis (FBA), as well as the details of the in silico reconstruction of Escherichia coli currently used as an example of one possible MOMA application.

Essential Bibliography

[1] Segrè, D., Vitkup, D., and Church, G. M. (2002) Proc. Natl. Acad. Sci. USA, 99(23), 15112-15117.

[2] Edwards, J. S. and Palsson, B. O. (2000) Proc. Natl. Acad. Sci. 97, 5528-5533 (See also http://gcrg.ucsd.edu/organisms/ecoli.html).

[3] Edwards, J. S. and Palsson, B. O. (2000) BMC Bioinformatics 1, 1.

[4] Varma, A. & Palsson, B. O. (1993) J. Theor. Biol. 165, 503-522

[5] Edwards, J. S., Ibarra, R. U. and Palsson, B. O. (2001) Nat. Biotechnol. 19, 125-30.

[6] Bonarius, H. P. J., Schmid, G. and Tramper, J. (1997) Trends. Biotechnol. 15, 308-314

2.
OPTIMIZATION IN MOMA

The algorithm implemented in the minimization of metabolic adjustment is described schematically in Fig. 1. The MOMA Perl program goes through two fundamental optimization steps, one using Linear Programming (LP), and the other Quadratic Programming (QP).

[image: image1.wmf]Prepare data for Linear

Programming (LP) solver

(e.g.:

mps

format)

(Matrix)*(variables)=0

(low)<(variables)<(up)

Maximize Objective

List of chemical reactions,

associated with steady

state rates (or “fluxes”)

1) A

®

 B (flux1)

2) 2B

®

 C (flux2)

 List of bounds

low1<flux1<up1

low2<flux2<up2

 Objective function

 (e.g. maximize growth)

Max{c1*flux1+c2*flux2}

Generate constraints

related to steady state

condition:

dB/

dt

=0

Þ

flux1-2*flux2=0

Solve LP for unperturbed state

Obtain set of predicted fluxes.

Prepare data for Quadratic

Programming (QP)

(e.g.: mps format)

Same as LP

+ Additional bounds (perturbation)

+ Minimization of flux distance

from unperturbed state

 List Additional bounds,

defining perturbation

 flux2<3

Solve QP for perturbed state

Obtain set of predicted fluxes.

Fluxes of

unperturbed

cell (wild-

type)

Fluxes of

perturbed

cell

(knockout)

Figure 1 A schematic flow chart representing the computational steps performed in order to generate predictions of fluxes and growth rates for metabolic networks perturbed by gene knockout.

The Linear Programming part

The linear programming (LP) executable (glpsol.exe) is a compiled program that uses the GNU Linear Programming Kit library (GLPK), freely available at the following web site: http://www.gnu.org/software/glpk/glpk.html.

GLPK is a set of routines written in ANSI C, designed for handling Linear Programming problems. GLPK is freely downloadable and open source. It can read standard LP files in mps format. Detailed installation instructions are available with the package. The file glpsol_dan.c serves as an interface between the Perl script and the GNU LP library. Its linux compiled version (a.out) is the one included in the current version of the package.

Following is the GLPK copyright statement:

The GLPK package is a part of the GNU project, released under the aegis of GNU.

Copyright © 2000, 2001 Andrew Makhorin, Department for Applied Informatics, Moscow Aviation Institute, Moscow, Russia. All rights reserved.

Free Software Foundation, Inc., 59 Temple Place — Suite 330, Boston, MA 02111, USA.

Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice is preserved.

The Quadratic Programming part
The QP that is called by the Perl script is an executable from the Object Oriented QP (OOQP) package, that can be downloaded at http://www.cs.wisc.edu/~swright/ooqp/. The name of the executable is qpgen-sparse-gondzio.exe
Following is the copyright statement that must be included from the OOQP copyright notification:

COPYRIGHT 2001 UNIVERSITY OF CHICAGO

The copyright holder hereby grants you royalty-free rights to use, reproduce, prepare derivative works, and to redistribute this software to others, provided that any changes are clearly documented. This software was authored by:

 E. MICHAEL GERTZ gertz@mcs.anl.gov

 Mathematics and Computer Science Division

 Argonne National Laboratory

 9700 S. Cass Avenue

 Argonne, IL 60439-4844

 STEPHEN J. WRIGHT swright@cs.wisc.edu

 Computer Sciences Department

 University of Wisconsin

 1210 West Dayton Street

 Madison, WI 53706 FAX: (608)262-9777

Any questions or comments may be directed to one of the authors.

ARGONNE NATIONAL LABORATORY (ANL), WITH FACILITIES IN THE STATES OF ILLINOIS AND IDAHO, IS OWNED BY THE UNITED STATES GOVERNMENT, AND OPERATED BY THE UNIVERSITY OF CHICAGO UNDER PROVISION OF A CONTRACT WITH THE DEPARTMENT OF ENERGY.

3.
INSTALLATION INSTRUCTIONS
Client

The MOMA Client agent is provided in the agents/momaClient directory in both the linux and windows BioSPICE releases. The name it uses for registration with the OAA facilitator is momaClient.

The following installation information appears also in the file README.client, distributed with the package.

Building from sources (optional step)

 Use build.sh (or .bat) to compile java sources and update the momaClient.jar archive.

 Note: the script must be executed from the java/dist directory

Running MOMA applet client

 Use java/dist/applet_client.sh (or .bat) to start the MOMA client.

 Note: make sure that OAA's setup.pl configuration file is in order and that the MOMA server is running using the specified OAA facilitator.

 Note: the script must be executed from the java/dist directory

Server

The MOMA Server agent is provided in the agents/momaServer directory in both the linux and windows BioSPICE releases. It is registered with the OAA facilitator with the name moma.

The following information appears also in the file README.server, distributed with the package.
Building from sources (optional step)

 Use java/dist/build.sh (or .bat) to compile java sources and update the moma.jar archive.

 Note: the script must be executed from the java/dist directory

Running MOMA OAA service

 Use java/dist/start_service.sh (or .bat) to start up the MOMA OAA server.

 Note: the script must be executed from the java/dist directory

 Startup Order
The MOMA OAA server should be started and registered with an OAA facilitator before a MOMA OAA client is started and registered with the same facilitator. The server and client can be running on different machines (for example, the server on a linux server machine and the client on a windows desktop machine) as long as they are registered with the same facilitator.

4. GRAPHICAL USER INTERFACE

The graphical user interface is written in Java, and enables the user to select some model parameters, run the MOMA Perl script, and read the output, either in a short or in a more detailed version. The main window is shown in Fig. 2. Up to 8 genes can be simultaneously knocked out (upper left part of the window). The names are standard E. coli central carbon metabolism gene names. There are detailed descriptions of the function of each gene available from the Ecocyc web site at http://ecocyc.org/. In the upper right portion of the main MOMA window, the user can choose the upper bounds for the uptake of glucose, nitrogen and oxygen, and decide whether or not isoenzymes of the selected genes for mutations should be knocked out as well (see references in Introduction for more details on this).

[image: image2.png]

Figure 2

Figure 2 includes at the bottom the growth flux results from running the FBA linear programming algorithm and the MOMA quadratic programming algorithm after knocking out the two genes selected from the input box pulldown lists as well as the wild type growth flux with no knockouts, using standard nutrient uptake fluxes in all cases, after clicking on “Compute MOMA”. These results will remain posted there until the next time “Compute MOMA” is selected, and they will be replaced by new values as soon as the MOMA server completes a minute or so later.
Once these results have been posted, you can open a separate scrolling window listing all 3 flux values for each of the several hundred fluxes in the complete model, as shown in Figure 3 for this example.

 [image: image3.png]
 Figure 3

5.
INPUT FILES
The following 3 files are found in the momaServer/perl directory and are read by the moma.pl perl script:

S.par = S matrix of stoichiometric coefficients

objvector.par = vector containing coefficients for objective function

constraints.par = set of boundaries for fluxes

These three additional files are found in the momaServer/java/src directory and are read by the MomaService.java program:

enzyme_names.dat = File that provides the index of the flux (VGRO) to be optimized and lists the names of all the fluxes in index order.

properties.dat = File that names the perl script to run and provides input and output file names.

mutable_genes.dat = File that lists the symbols of the genes that can be knocked out and the flux index associated with each. If you decide you decide to use OAA Solve requests (such as in the Debugger agent) to directly submit ICL requests to the MOMA server, you should use these flux indices to specify which genes to mutate.

 6. EXAMPLES FOR TESTING

The first example using the MOMA Client is illustrated in section 4. To use this test on the MOMA server directly without involving the Client you can use the debug agent or the oaa_solve.sh script to submit this oaa_Solve call to carry out the same analysis:

oaa_Solve(moma(1,[10.0,20.0,100.0],[1,2],[],[],[]),[])

The first argument to moma should be a 1 to mutate isozymes or a 0 not to mutate any isozymes. The second argument is an array of the three nutrient uptake fluxes (usual values, 10.0, 20.0, and 100.0). The third argument is an array of the flux indices that correspond to the genes to be knocked out. As listed in the java/src/mutable_genes.dat file, flux 1 corresponds to gene glk and flux 2 corresponds to gene pgi. The last three arguments are returned by moma containing flux arrays, the first for wild type growth, the second using linear programming to compute the effects of the requested knockouts, the third using quadratic programming to compute the effects of the same knockouts. Figure 4 shows what the debug agent looks like once moma has responded to this request. Note that the Debug Agent truncates the long flux arrays, it is not possible to scroll through all the values.

[image: image4.png]
 Figure 4

