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We are in the enviable position of having two distinct drafts of the human genome sequence. Although gaps, errors, redundancy
and incomplete annotation mean that individually each falls short of the ideal, many of these problems can be assessed by
comparison. Here we present some comparative analyses of these drafts. We look at a number of features of the sequences,
including sequence gaps, continuity, consistency between the two sequences and patterns of DNA-binding protein motifs.

T he two draft sequences of the human genome were
generated by the Human Genome Project (HGP)1 and
Celera Genomics2. Genome sequencing entails direct
sequencing of DNA fragments and assembly of the
fragment sequences into larger units on the basis of

their overlaps (shotgun assembly). The HGP used a hierarchical
mapping and sequencing approach, involving generation of a series
of overlapping clones that cover the entire genome and shotgun
sequencing of each clone. The genome sequence was reconstructed
by assembling the fragments on the basis of sequence overlap and
mapping and chromosomal position information on the clones.
Celera Genomics used a whole-genome shotgun sequencing
approach, without generating a series of overlapping clones, but
also incorporated HGP information where available.

We worked with three versions of genome sequence. (1) Data
from the individual large-insert clones sequenced by the publicly
sponsored HGP is available from the National Center for Biotech-
nology Information (NCBI; http://www.ncbi.nlm.nih.gov), and is
denoted here as HGP-all. HGP-all comprises 4.8 gigabases (Gb)
from 34,084 large-insert clones (identified as phase 0 (raw) to phase
3 (finished) sequence) and is highly redundant because it contains
sequences from a collection of overlapping clones, as well as other
sources whose overlaps have not been fully resolved through
assembly. (2) Several genome-wide assemblies have been produced
by merging the data in HGP-all. We studied an assembly comprising
2.9 Gb in 6,094 sequences—designated here as HGP-nr (‘nonre-
dundant’)—in which clearly identifiable redundancies were elimi-
nated. Several other genome assemblies have also been generated;
these assemblies are not analysed here. (3) We used Celera Geno-
mics’ ‘Human Genome D’2, which represents 2.9 Gb in 54,061
sequences, denoted here as Cel (which we obtained through an
academic licence to the Celera database). We did not analyse their
larger unassembled databases of 23.1 million human fragments and
2.8 million polymorphic variants. NCBI has made rapid progress
towards annotating HGP-nr for genes on the basis of their RefSeq
database3, which is a manually curated collection of mRNA
sequences from known genes, but at the time of writing (December
2000) the Cel sequence had no directly linked annotation.

Cel and HGP-nr use long strings of Ns to indicate gaps in
assemblies (Fig. 1). Although the two draft genome sequences are
similar in size, HGP-nr contains fewer unidentified bases than Cel
(0.65% versus 8.7%, respectively; the 1.0-Gb HGP-all phase 3
sequence contains even fewer, 0.005%), largely because gaps are
annotated differently in the two sequences. Thus, when one removes
the unidentified bases (Ns), the amount of specified nucleotide
sequence is 2.84 Gb for HGP-nr and 2.66 Gb for Cel. HGP-nr

contains 181,079 strings of 100 Ns to represent gaps but contains
strings of up to 2,500 Ns; Cel contains 21,684 strings of 50 Ns but
contains strings of up to 168,735 Ns. Figure 2 shows the sizes of
continuous segments of sequence not broken by strings of 20 or
more Ns (ungapped sequences). Whereas Cel uses the lengths of
very long strings of Ns to represent the estimated sizes of large gaps,
HGP-nr generally simply uses strings of 100 Ns and does not use
string length to represent gap size. Therefore the smaller continuous
strings of Ns in HGP-nr does not imply that gaps in HGP-nr are
smaller than in Cel.

As another indicator of the continuity of the assemblies, we
examined the ten genes in the RefSeq database with the largest
messenger RNAs and tested whether their coding sequences could
be found on single contigs, the largest continuous sections of
sequence (possibly interrupted by N strings) generated by sequence
assembly (Fig. 2). We used the BLASTsearch algorithm4 to locate the
best contig matches for the first and last 500 base pairs (bp) of the
coding regions of these ten genes. Six of these genes in HGP-nr, and
seven in Cel, had both ends on the same contig. In HGP-nr, ACF7
and RYR2 had ends in different contigs, while NEB and MUC2
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Figure 1 Lengths of continuous strings of Ns in the Cel and HGP-nr genome
assemblies. Long strings of Ns are used to represent gaps but do not always represent
gap size. The Cel assembly contained 169,779 stretches of Ns ranging in length from
1 to 168,735. The HGP-nr assembly contained 407,686 stretches of Ns ranging in
length from 1 to 2,500. Cel, HGP-nr: see text.
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matched a contig for one end but a matching sequence could not be
located for the other. In Cel, ACF7 and MUC2 had ends in different
contigs, and a smaller coding region (TNNT2) appeared to have one
end in a Cel contig and the other in a stretch of Ns and an unfinished
fragment. These results indicate that both sequence assemblies have
limited ability to build contigs covering the longest stretches of
DNA that cells themselves can transcribe continuously.

Comparing unique stretches of sequence
Oligonucleotides that occur only once in the genome can be useful
for making specific probes for genomic DNA or messenger RNA, or
as the 39 ends of specific primers for polymerase chain reaction
(PCR) amplification. They can also provide a high-level statistical
view of how much sequence content the two draft genome
sequences have in common. We analysed stretches of 15 nucleotides,
referred to as 15-mers. In 6 Gb of genomic sequence (with both
strands considered), the number of occurences of an arbitary 15-
mer (of which there are 415 or slightly more than one billion) can be
estimated as following a Poisson distribution with mean of about 6
(see Supplementary Information). Disregarding splice junctions, a
typical mRNA sequence of 2000-bp should therefore contain about
five unique 15-mers and have a 99% likelihood of having at least
one. Using a computer algorithm to analyse the two genome
assemblies, we considered every possible 15-mer and determined
whether it occurred 0, 1 (unique) or multiple times. Sequence and
assembly errors, gaps, redundancies, splice junctions and poly-
morphisms all affect whether a given 15-mer will be counted as
unique. We therefore refer to 15-mers seen only once as candidate
unique 15-mers (cu-15s). Assuming a combined rate of sequence
error and polymorphism of 0.1% per base, we estimate a cu-15 false
positive rate of 0.14% and a cu-15 false negative rate of 9.0% (see
Supplementary Information). A false positive is a multiply occur-
ring 15-mer that is detected as unique because variations have made
all but one occurrence appear different; a false negative is a unique
15-mer that is detected as multiple because of variations in similar
15-mers.

We found 169,609,634 cu-15s in the 2.9-Gb Cel sequence and
160,311,078 in the 2.9-Gb HGP-nr sequence. Of the cu-15s in the
two sequences, 19,270,620 are found only in Cel and 17,527,980 are

found only in HGP-nr; therefore, nearly 11% of cu-15s in each
sequence are not shared with the other. Because the analysis is
expected to have a false negative rate of 9% for each database, this
suggests that the true amount of sequence present in one database
and not the other is about 0.14% for both HGP-nr and Cel (see
Supplementary Information). Cel and HGP-nr therefore contain
similar amounts of unique sequence, and most unique sequences
are common to both. We also looked for unique 15-mers represent-
ing 10,292 mRNA sequences from the RefSeq database3 (see Supple-
mentary Information); we found 2,526,912 when compared against
Cel and 2,372,185 when compared against HGP-nr. Again the Cel
and HGP-nr results are comparable.

By analysing cu-15s in coding sequences we found additional
differences between the Cel and HGP-nr draft genome assemblies.
For instance, the coding regions for the genes LOC63301 and GR3,
which are 99% identical over their 1,113 bases, are annotated in
HGP-nr as being located on two distinct chromosomes: contig
NT_008902 (chromosome 10) and contig NT_023464 (chromo-
some 6), respectively. However, we found that these sequences are
contained on only a single Cel contig (GA_x2HTBL4-
GEJJ:1..500000) and, consistent with this, we found 396 cu-15s in
the Cel database shared by both sequences. Analysis of the HGP-nr
sequence using ‘BLAST2 sequences’ (ref. 5) indicates that the
contigs share a larger region of sequence identity, with the first
10,652 bases of NT_023464 being 99% identical to a region inside
NT_008902. This difference could arise from an error in Cel
assembly, caused by inability to distinguish two regions with very
high sequence identity, or from insufficient coverage of the regions
by high quality sequence reads. Alternatively, an HGP-nr error
could arise from assembly limitations or insufficient high quality
coverage of the single region endpoints, or from erroneous mapping
of the single region to two chromosomes.

Searches for DNA-binding protein motifs
Compared with other organisms6,7, the characterization of DNA-
binding protein motifs in humans has been limited until recently by
the paucity of sequence data for noncoding DNA. Although the
draft human sequence has overcome this limitation, the large size of
the human sequence and the existence of active regulatory sites
located far from the genes they regulate8 pose new challenges to
binding-site analysis. To assess how much they are enriched in the
neighbourhood of genes in humans, we searched for motifs for two
DNA-binding proteins (EGR-1 and CRX) in 4-kb upstream
sequences of 3,352 genes and compared their abundances with
those found in random 4-kb sequences and available positive
control upstream sequences known or likely to contain binding
sites (see Supplementary Information). We focused on HGP-nr
sequence rather than Cel for upstream sequence because more
annotation for genes was available, but used both HGP-all phase
3 and Cel for random sequences.

The human zinc finger DNA-binding protein EGR-1 (homo-
logous to mouse Zif268) is induced by growth factors and nerve cell
depolarization and is involved in cellular proliferation and
differentiation9. We developed weight matrices that variously took
into account a recognized nine-base consensus binding site
(GCG[G/T]GGGCG10), in vitro selection data indicating a modified
consensus and specific interactions with flanking bases11, and our
own double-stranded DNA array binding data, which indicates that
the middle three bases of the site do not independently affect
binding specificity12. Figure 3a shows the results of a search for
EGR-1 sites using matrix M1EGR-1, which looks for nine-base sites
and uses a scoring threshold that allows only sites with small
deviations from the consensus (see Supplementary Information).
We found that upstream regions were significantly enriched for
EGR-1 sites compared with random sequences, but not significantly
different from 17 positive controls (Table 1). However, EGR-1 sites
are GC-rich and therefore could occur more frequently by chance in
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Figure 2 Cumulative histogram of the fraction of assembled genome sequence
present in contigs and in ungapped continuous sequences that exceed a given length
in the HGP-nr and Cel assemblies. Contigs are the largest continuous segments of
sequence generated by assemblies. The Cel assembly consisted of 2.9 Gb in 54,061
contigs. The HGP-nr assembly consisted of 2.9 Gb in 6,094 contigs. Contigs may
contain gaps represented by strings of Ns (Fig. 1). Here ungapped continuous
sequences (ungapped seqs) are counted as maximal stretches of sequence that do
not contain strings of 20 or more Ns. Cel, HGP-nr: see text.
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CpG islands upstream of genes. We therefore used a second matrix,
M2EGR-1, which took into account the flanking bases of the nine-
base site and compensated for the local GC content of potential sites
when calculating scores (see Supplementary Information). The
results of this search still indicate over-representation of EGR-1
sites in upstream regions (Fig. 3a, Table 1).

But not all DNA binding motifs show this pattern. We also
searched for binding motifs for the photoreceptor homeobox
transcription factor13 CRX. We generated a matrix, M1CRX, for
CRX which indicated that CRX binding motifs are significantly
under-represented in upstream regions compared with random
sequence (Fig. 3b, Table 1). We are currently inspecting 67 CRX-
regulated genes as potential positive controls. The only two
inspected in detail so far, RHO (which encodes rhodopsin) and
PDC (which encodes phosducin), are found to have three and two
upstream sites, respectively. Although each of these is significantly
higher than the number of sites found in the 3,352 upstream regions
or random controls, the number of positive controls examined is
too low to draw general conclusions (see Supplementary Informa-
tion). These preliminary results suggest that DNA binding protein
motifs have different statistical representation in upstream regions

compared with other sequence, but that over-representation in
these regions does not necessarily indicate regulation by the protein.
We are continuing our investigations with larger sets of upstream
sequences (see Supplementary Information).

Although there are similar average numbers of DNA-binding sites
in random sequences from Cel and HGP-all, they are significantly
different (Table 1). This probably reflects subtle differences in the
sequences that could be detected because such large samples were
compared (83,800 for HGP-all and 33,520 for Cel). The differences
between upstream sequence and random sequence were significant
regardless of whether random sequence came from HGP-all or Cel.

Discussion
The HGP-nr and Cel draft genome assemblies are similar in size,
contain comparable numbers of unique sequences (which we
analysed as unique 15-nucleotide stretches, cu-15s), and exhibit
similar statistics for sample candidate DNA protein-binding motifs.
Some differences emerge at a detailed level. Sequence content aside,
the assemblies are also packaged differently. Contigs in each exhibit
different size and gap distributions (Figs 1 and 2), and HGP
presents more stages of assembly by providing four phases of
sequence data compared with the single Cel Human Fragments
database. More annotation is also available at HGP. We expect all
these differences to diminish as assemblies become more complete
and comprehensive.

The complete human genome presents us with challenges on
several levels. First, the analysis of 3 Gb of human sequence requires
increased computer resources compared with analysis of smaller
genomes, although this need can be addressed to an extent through
modest computational goals and careful planning. For instance, a
suffix array is a fast and convenient way of finding unique sub-
sequences in a set of sequences14, but in our hands it requires 12
bytes of RAM per base pair of sequence when the number of
sequences is large. The computer program described above required
less than 300 Mbytes of RAM and could analyse cu-15s in the 4.8-Gb
HGP-all in eight hours on a high-end conventional PC (see
Supplementary Information). A second challenge is the fact that
the genome sequences are constantly being updated, so programs
that analyse them must be modified and rerun frequently to include
the latest information and to accommodate new packaging and
annotation. But this challenge brings with it the promise of rapid
progress and new opportunity.

The broadest challenge will be the development of algorithms and
platforms to meet the new computational needs that will arise as a
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rand-Cel Table 1 DNA-binding protein binding sites

Sequence set Sites per sequence Sequence set comparisons
up3352 rand-HGP rand-Cel

Matrix M1EGR-1
up+c 2.35 6 1.80 0.8140 1.4 × 10−7* 2.2 × 10−10*
up3352 2.21 6 2.45 0* 0*
rand-HGP 0.64 6 1.34 1.1 × 10−25*
rand-Cel 0.55 6 1.17

Matrix M2EGR-1
up+c 1.12 6 0.99 0.6951 0.0032* 0.0002*
up3352 1.00 6 1.26 5.5 × 10−240* 0*
rand-HGP 0.42 6 0.98 0.0004*
rand-Cel 0.40 6 0.80

Matrix M1CRX
up3352 0.16 6 0.40 1.4 × 10−14* 7.0 × 10−19*
rand-HGP 0.22 6 0.48 7.8 × 10−6*
rand-Cel 0.24 6 0.50
.........................................................................................................................................................................
Average number 6 s.d. of DNA-binding protein motifs found by different motif matrices in sets of
4,000-bp genomic sequences, and comparisons of average numbers found for different sets.
Motif matrices M1EGR-1 and M2EGR-1 for EGR-1 binding sites, and M1CRX for CRX binding
sites, are described in the text. Sequence sets: up+c, upstream regions of 17 EGR-1 positive
control genes (see Supplementary Information); up3352, upstream regions extracted from HGP-
nr sequence for 3,352 genes (see text); rand-HGP, 25 sets of 3,352 4,000-bp regions randomly
extracted from HGP-all phase 3 sequence; rand-Cel, 10 sets of 3,352 4,000-bp regions randomly
extracted from Cel sequence. Sequence set comparisons: t-test probabilities that average sites/
sequence are equal for different sequence sets. Asterisk, statistically significant comparison (t-
test P , 0.05).
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result of the human genome sequence. For instance, any single 9–
11-mer will occur 1,450–23,000 times in 6 Gb of DNA by chance
alone, and therefore a 9–11-base recognition sequence for a protein
such as EGR-1, which admits many variations, will occur many
times more often. How do we distinguish actual regulatory sites?
Focusing on regions near the 59 ends of genes may provide a first
order approach, but the case of EGR-1 above suggests that this may
not be very specific for functional sites. A promising approach is to
look at regions of the upstream sequences that are conserved in
other mammals15,16. Similar genome-wide comparison require-
ments are arising in other contexts. For instance, new mutations
have accumulated in the human population at a rate of 1–100
mutations per generation over the past 5,000 generations17. This
means that among the 6 billion humans alive today, there is a
reasonable chance that all possible single nucleotide polymorph-
isms exist for each of the approximately 3 billion base pairs of the
human genome. It is becoming clear that costs must be reduced to
study effectively the association of traits with polymorphisms18 or
haplotypes19, but moving from population associations to accurate
assessment of individual variations is likely to require sequence
analysis of the two copies of the three billion base pairs in any of the
six billion humans who desire it.

We remain optimistic that these challenges will be met. Through
remarkable miniaturization and quality improvements, the cost of
genomics has been dropping roughly twofold every 18 months for
decades, paralleling the trend for computing20. In a few years’ time
we may be able to read the 6 billion DNA base pairs in a human cell
almost as easily and inexpensively as we can read a similar number
of bits in a CD or DVD today. Today’s milestone—two human
genome sequence drafts—foreshadows a future in which resequen-
cing and comparison of entire mammalian genomes will be routine
operations for biology laboratories. M
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