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Modern experimental technologies can assay large num-
bers of biological sequences, but engineered protein librar-
ies rarely exceed the sequence diversity of natural protein 
families. Machine learning (ML) models trained directly on 
experimental data without biophysical modeling provide one 
route to accessing the full potential diversity of engineered 
proteins. Here we apply deep learning to design highly diverse 
adeno-associated virus 2 (AAV2) capsid protein variants that 
remain viable for packaging of a DNA payload. Focusing on a 
28-amino acid segment, we generated 201,426 variants of the 
AAV2 wild-type (WT) sequence yielding 110,689 viable engi-
neered capsids, 57,348 of which surpass the average diversity 
of natural AAV serotype sequences, with 12–29 mutations 
across this region. Even when trained on limited data, deep 
neural network models accurately predict capsid viability 
across diverse variants. This approach unlocks vast areas of 
functional but previously unreachable sequence space, with 
many potential applications for the generation of improved 
viral vectors and protein therapeutics.

Engineering of protein phenotypes is limited by our ability to 
mutate multiple positions in a protein sequence and predict the 
functional outcome. Despite outstanding progress in computational 
de novo protein design1–3, simulation-based predictions are chal-
lenging for large natural protein complexes. Moreover, biophysical 
models falter when modifications affect conformation, since the 
physical interactions that determine protein function are not well 
understood4–6. Directed evolution is a powerful approach7–9, with 
the repeated application of random mutation and artificial selec-
tion often being the default engineering strategy when mechanis-
tic understanding is limited, as is the case for proteins like AAV 
capsids10,11. Recent high-throughput DNA sequencing-based 
assays allow large-scale mapping of fitness landscapes12–14, while 
advances in DNA synthesis and ML technologies enable a com-
pletely data-driven workflow for accelerated directed evolution15–22. 
However, it is unknown to what extent ML models trained on 
and around natural sequences can generate functional sequences 
substantially different from any natural homolog. We applied 
ML-guided diversification to the AAV capsid, a complex multipro-
tein assembly, as a case study to test whether data collected from 
high-throughput experiments can yield ML models that success-
fully guide the design of functional and diverse sequence variants. 
We validated our approach with a massively parallel experimental 
study to directly test the utility of machine learning for biological 
sequence design and diversification (Fig. 1a).

Adeno-associated virus capsids show great promise as gene deliv-
ery vectors. The AAV2 capsid is a component of the first gene ther-
apy to receive approval by the US Food and Drug Administration 
for use in humans23,24, while other serotypes are in clinical trials25. 
However, new AAV designs could overcome the limitations of cur-
rent vectors, such as the immunity of patients with previous AAV 
exposure26. Previous engineering strategies, such as error-prone 
mutagenesis11, random shuffling between AAV serotypes to cre-
ate chimeric capsids10, and random mutation at structurally guided 
positions27 have shown limited success in overcoming antibody 
neutralization, because the resultant sequences remain quite simi-
lar to natural isolates. Epitopes for neutralizing antibodies occur at 
many locations across the capsid surface28, indicating that capsids 
capable of avoiding neutralizing serum will require changes to many 
positions, most probably approaching or exceeding the diversity of 
natural serotypes (that is, on the order of hundreds of sequence dif-
ferences). To evaluate a purely data-driven approach to diversifica-
tion, we directly generated synthetic sequences near the threefold 
symmetry axis of the icosahedral AAV2 VP1 protein. Specifically, 
we targeted positions 561–588, a region that encompasses buried, 
surface and interface regions and overlaps both known heparin- 
and antibody-binding sites28.

Capsid production represents a bottleneck in the creation of 
diverse AAV capsids because the majority of sequence variants 
fail to either assemble or package their genome19,27,29. To generate 
large and diverse datasets for training ML models of capsid pro-
duction, we employed two strategies—choosing multi-mutants ran-
domly or based on predictions from simple additive models. For 
the latter, we first assayed all single amino acid substitutions and 
insertions within the target region (Fig. 1b), finding that 58% were 
viable, meaning that they assemble an integral capsid that packages 
the genome. In contrast, randomly chosen multi-mutant sequence 
variants with between 2 and 10 mutations (Levenshtein distance) 
were only 10% viable, with only 0.3% viability for variants with at 
least 6 mutations (3 of 1,154). The yield of viable multi-mutants 
was improved by stochastically sampling from additive models fit 
on single-site data (Methods). We used this baseline approach to 
design 56,372 variants with between 2 and 39 mutations in the tar-
get region, testing the limits of exploration made possible given our 
previous data: 62.5% were viable, although none of the 1,790 vari-
ants with >21 mutations were viable.

To assess different protocols for ML-guided sequence design, we 
examined the impact of (1) training set design and (2) ML model 
architecture. We compared three ML training datasets designed via 
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complete (C), random (R) or additive (A) sampling strategies, split-
ting data from the previous experiment into three sets varying in 
the number of sequence variants and their distribution and distance 
from WT. These splits enabled assessment of how training data 
structure affects model performance (Fig. 1b). The smallest data-
set, C1 + R2, contains the complete set (C1) of 1,112 possible single 
variants plus 1,756 randomly chosen sequence variants with 2 muta-
tions. The C1 + R10 dataset contains C1 together with R10, 7,908 ran-
domly chosen sequence variants with between 2 and 10 mutations, 
while the R10 + A39 dataset contains R10 plus the 56,372 additive 
model-designed sequence variants with between 2 and 39 muta-
tions, described above. A fixed set of 1,977 randomly chosen 
sequence variants with between 2 and 10 mutations was held out for 
hyperparameter tuning (Methods). To avoid overfitting to experi-
mental noise, rather than predicting the quantitative production 
efficiency we used binary classification models to predict whether 
each sequence variant is viable (Supplementary Fig. 1), as defined 
by a threshold fit to best separate positive and negative controls 
(WT replicas, and variants containing stop codons, respectively).

Across each training set, we compared the performance of three 
model architectures: a simple logistic regression (LR) model, con-
volutional neural networks (CNNs) and recurrent neural networks 

(RNNs). For each of the nine resulting dataset–architecture com-
binations we trained an ensemble of 11 randomly initialized rep-
lica models and used the mean model score from each ensemble 
to rank 2.1 billion sequences (Fig. 1c), corresponding to 100 million 
sequences sampled uniformly at random at each distance from 5 
to 25 steps from WT. For each ensemble, the 1,000 highest-scoring 
sequences at each distance were chosen as ‘model-selected’ seed 
sequences. However, in our random training dataset R10, the pro-
portion of viable capsid sequences drops rapidly as the distance 
from WT increases. Toward the goal of deep diversification, we 
therefore used the model ensembles to improve model-selected seed 
sequences. Briefly, to generate model-designed variants (Fig. 1c), we 
used the model ensembles to iteratively rank, filter and mutate (via 
single-residue edits) seed sequences for up to 20 rounds (Methods).

For each dataset–architecture combination, the highest-scoring 
model-selected and model-designed sequences at each dis-
tance between 5 and 29 from WT were synthesized and a total 
of 201,426 sequence variants were experimentally evaluated 
(Supplementary Tables 1–7). To verify reproducibility between the 
training and validation experiments we retested 2,000 sequences 
from the training set as controls, demonstrating strong experimen-
tal reproducibility (R = 0.89, P < 10–20; Supplementary Fig. 2).
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Fig. 1 | Generation of diverse sequence variants guided by ML models trained on deep mutational libraries. a, Experimental workflow: multiplexed 
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(helix markers (i, ii, iii) indicate separate experiments) were conducted to generate production data for (1) all single mutants, (2) ML training data and 
(3) ML validation data. b, ML model training workflow: experimental data from mutants generated by complete (C), random (R) or additive (A) sampling 
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Model-guided design was dramatically successful at generating 
diverse viable sequence variants. Within this region, diverse natural 
AAV serotypes differ from AAV2 on average at μ = 12 ± σ = 6 posi-
tions (s.d.). Model-selected sequences from CNN and RNN models 
showed close to 100% viability at 6 mutations from WT (Fig. 2a),  
the threshold at which randomly chosen sequence variants were 
largely nonviable. However model-selected viability dropped 
quickly beyond 12 mutations from WT, most probably because the 
randomly generated candidate sequences from which the models 
had to choose were overwhelmingly nonviable. In contrast, many 
model-designed sequences with >12 mutations from WT were viable 
(Fig. 2b). Overall, 58.1% of model-designed sequences (106,665 in 
total) formed viable capsids with up to 29 mutations from the WT 
sequence, including variants with up to 19 substitutions or 15 inser-
tions within the 28-residue target segment. On average, the neural 
network (NN) model-designed sequences were 33 times more likely 
to be viable than those designed by the additive model at 18 mutations 
(μ + σ) from WT, with even greater improvements at larger distances.

The performance of NN models was robust to variations in the 
amount and composition of training data. While the LR model 
trained with the medium-sized C1 + R10 dataset was >90% viable 
as far as 24 mutations (μ +2σ) from WT, LR models trained on 
the smallest (C1 + R2) and largest (R10 + A39) datasets were unreli-
able (Fig. 2b). In contrast, CNN and RNN models trained on the 
smallest (C1 + R2) dataset successfully designed many variants with 
>18 mutations (μ + σ) from WT, comparable to those trained on 
the ~threefold larger C1 + R10 and ~22-fold larger R10 + A39 datasets 
(Fig. 2b). We note that all models benefitted from the decision to 
use ensembles (Supplementary Fig. 3). Across all models, and the 
LR models most markedly, we observed that the inclusion of more 
training data does not guarantee better model performance. To bet-
ter understand this observation, we turned to analyzing the diver-
sity of designed variants.

Models differed in the levels of sequence diversity that they gen-
erated. The first two-thirds of the target region is more conserved 
across natural AAV sequences, probably because these positions are 
less surface exposed and are constrained by the oligomeric interface 
(Fig. 3a). While the performance of models trained on the C1 + R10 

dataset was uniformly high, NN models successfully incorporated 
diverse residue substitutions at buried and interface sites much 
more frequently than the LR model (Fig. 3b and Supplementary  
Fig. 4). Additionally, NN models successfully incorporated many 
insertions into the buried part of the capsid, which is intolerant of 
insertions in general (Fig. 3b). While the LR(C1 + R10) model had 
strong preferences for particular amino acids at each position (as 
seen by its low perplexity, Fig. 3b), RNN models exhibited prefer-
ence for substituting amino acids with similar chemical properties 
while CNN models tended to be more selective among positions  
(Fig. 3b). Moreover, while all models were capable of mutating the 
later, surface-accessible, portion of the target region, NN models 
incorporated a greater diversity of amino acids at these positions  
(Fig. 3b). The LR(R10 + A39) model exhibited greater diversity (Fig. 3b)  
but relatively poor precision (Fig. 2b), indicating the importance 
of sequence context when mutating to more diverse sets of amino 
acids at each position. Conversely, while the LR(C1 + R10) model had 
the highest precision of all models, the greater per-position diversity 
of the NN models suggested that their sequence proposals were dis-
tributed across a much larger region of sequence space.

To test this hypothesis, we quantified model diversity by calcu-
lating the number of clusters obtained when the viable sequences 
designed by each model were clustered using pairwise Levenshtein 
(edit) distance (Methods). For all datasets, CNN and RNN mod-
els identified viable sequences covering much larger volumes of 
sequence space than the LR models (Fig. 4a). The LR model with 
highest performance (C1 + R10) was also the least diverse, primar-
ily generating highly similar viable sequences. Pure maximization 
of precision or diversity can result in a trade-off: selecting only the 
highest-scoring sequence may be precise but results in no diversity, 
whereas randomly generated sequences have high diversity but low 
precision. Of course, models can also have low diversity and low 
precision (for example, LR(C1 + R2)).

To quantitatively evaluate model performance in this respect, we 
further clustered all designed sequences using a radius of 12 edits 
(μ) and computed average viability within the resulting clusters. 
At all viability thresholds, NN models outperformed LR models. 
RNN performed best for the smallest (C1 + R2) dataset, while CNN 
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performed better for the larger datasets (Fig. 4b). Projecting via-
ble sequences from the C1 + R10 models into two dimensions with 
ivis30 provides visual intuition: the CNN model generated viable 
capsids across much larger regions of sequence space than the 
highly accurate LR(C1 + R10) model, although we note that all mod-
els detected viable sequence variants that are highly distinct from 
natural AAV serotypes (Fig. 4c and Supplementary Fig. 4b–d). In 
summary, our CNN and RNN design strategies were more success-
ful at deep diversification than LR at all precision levels and across 
all datasets, although better strategies are certainly possible and 
additional work will determine how these findings generalize to  
other contexts.

The success of these diversification strategies (1) addresses the 
immediate need for engineered AAV capsids with sequences dis-
tinct from natural isolates and (2) demonstrates that data-driven 
models can perform well on complex proteins without incorpo-
rating extensive domain knowledge or physical models, even with 
limited training data (as shown here by the success of models 
trained using <3,000 data points). For AAV, the diverse set of via-
ble sequence variants discovered by the NN models are promising 
candidates to test for additional gain-of-function phenotypes, such 
as improved cell tropisms and manufacturability. More generally, 

models can be trained to simultaneously predict multiple pheno-
types to jointly optimize variants for several desirable properties, a 
task that is substantially more challenging for traditional methods 
of directed evolution.

While many ML studies are conducted on a single standard-
ized dataset where differences in only model architecture choices 
are compared, our study highlights the value of optimizing train-
ing data distributions for improved predictive power. The fact that 
relatively small, simple and unbiased training sets enable viability 
predictions far from WT suggests that similar approaches can be 
used for proteins in which high-throughput screens are impractical. 
Importantly, after such models have been trained, the generation of 
new sequences requires only additional computing time, bringing 
a vast number of diverse and functional synthetic variants within 
reach. This study lays the foundation for the efficient model-guided 
exploration of deep sequence space, empowering both basic biology 
and protein engineering.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
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Fig. 3 | Neural network models generate greater diversity across positions. a, Three-dimensional structure of the 28-residue region with boxed  
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Methods
AAV mutant sequence library generation and production assay. Libraries were 
constructed using a method similar to that previously described by Ogden et al.19. 
For the final validation experiments, 184-mer DNA oligonucleotides (oligos) were 
synthesized as single-stranded DNA by Agilent. Designed amino acid sequences 
were back-translated to nucleotide sequences by choosing any possible codon 
(generally keeping the WT codon and selecting mutant amino acid codons with 
no bias, but disallowing codon choices that created restriction enzyme sites used in 
cloning). From 5′ to 3′, each oligo contained a forward primer binding site, a BbsI 
restriction site (5′-GAAGACAT|TACA-3′), a nucleotide mutant coding sequence 
(with at least 84 nucleotides), a BsaI restriction site (5′-CAAG|CGAGACC-3′),  
an EcoRV ‘kill-cutter’ restriction site, a BsaI restriction site in the opposite 
orientation (5′-GGTCTCA|CGCT-3′), an 18-nucleotide barcode sequence,  
a BbsI site in the opposite orientation (5′-CGCT|AAGTCTTC-3′) and a reverse 
primer binding site. Note that barcodes were included in the synthesized oligos  
but were not used for downstream sequencing or analysis (rather, the mutant 
coding region was directly amplified and sequenced, matching the amplification 
method used in the previous production experiments). PyDNA32 was used for 
in silico testing of the cloning process, ensuring sequence compatibility with 
the cloning strategy. The code for executing this process is fully provided in the 
synthesis pipeline component of the bioinformatics pipeline code (Code availability 
and Nature Research Reporting Summary).

An example oligo with WT coding region is 5                                              ′
A                 G                                                                                         A                                            A                                                                    G                               A                                                                  C                                                             A                                                                        T                          T                                                                                A                                                     C                                                                   A                                       G                                                              A                                               C                                                                                           G        A                                                                                            A                                         G                                                                  A                                        G                                                                 G                                                      A                                                                                A                         A                                                                           T                                                           C                                                               A                  G                                               G                               A                                                           C        A                                                    A                    C                           C             A                              A                          T                             C     C                        C              G                    T          G                    G            
C                 TA                 C        G             G      A             G       C          A  G         T       A        T   G        G     T        TC       T   G     T  A     T    C      T A    C  C   A A   C  C    TC    C  A   GA  G A  GG  C A  A 
C  A G  AC AA GC GA GA CC GA TATCGGTCTCACGCTGTAATGCGGTCTGA 
GCCGCGCTAAGTCTTCGTGTGGCTGCGGAAC-3′.

Cloning was carried out in three steps. First, oligos were PCR amplified 
using Q5 high-fidelity DNA polymerase (NEB, no. M0492) and an annealing 
temperature of 60 °C (forward: 5′-GGGTCACGCGTAGGA-3′, reverse: 
5′-GTTCCGCAGCCACAC-3′). A backbone plasmid containing the WT AAV2 
cap gene was also amplified with Q5 and an annealing temperature of 72 °C 
(forward: 5′-TTGGTCTCA|CGCTAGAGACGGTGTGGCTGCGGAAC-3′, 
reverse: 5′-AAGGTCTCC|TGTAATCATGACCTTTTCAATGTCCACATTTG-3′). 
This PCR was used to add BsaI sites with overhangs complementary to BbsI 
overhangs in the oligos (as indicated by cut sites in primer sequences). Amplified 
oligos were digested with BbsI-HF (NEB, no. R3539), and amplified plasmid was 
digested with BsaIHF-v2 (NEB, no. R3733) in separate 50-µl reactions. Digest 
products were purified using homemade SPRI beads, mixed at a 3/1 molar 
ratio (oligos/plasmid) and ligated using T4 DNA ligase (2 × 106 U ml–1; NEB, 
no. M0202). Ligation products were ethanol precipitated and transformed into 
50 µl of electrocompetent cells (Lucigen 10G SUPREME, no. 60081). Following 
1-h recovery at 37 °C, cells were added to 4 ml of selection medium (2× YT 
with kanamycin) and grown at 37 °C overnight. The following morning, step 1 
library plasmids were mini-prepped by alkaline lysis (Qiagen, no. 27104). In this 
first cloning step, oligo sequences replaced the corresponding 84-base-pair WT 
sequence and the 3′ region of the cap gene in the backbone plasmid.

In the second cloning step, an amplicon containing the 3′ WT region 
of the cap gene was generated from the initial backbone plasmid using 
Q5 and an annealing temperature of 72 °C (forward: 5′-TTGGTCTC
A|CAAGCAGCTACCGCAGATGTCA-3′, reverse: 5′-AAGGTCTCA|A
GCGAGAGACGTCCTACGCGTGACCC-3′). This amplification step was 
also used to add BsaI sites complementary to those in the oligos. Step 1 library 
plasmids and the 3′ WT amplicon were separately digested with BsaI-HFv2, bead 
purified and ligated as above. Ligation products were digested with EcoRV-HF 
(NEB, no. R3195) in a kill-cutting step to remove step 1 plasmids that did not 
incorporate the 3′ WT amplicon. EcoRV digest products were ethanol precipitated, 
transformed and mini-prepped as in step 1. In the third cloning step, a destination 
ITR-containing plasmid was digested with HindIII-HF (NEB, no. R3104) and 
SpeI-HF (NEB, no. R3133). Complete mutant cap gene sequences were amplified 
from the step 2 plasmid library using Q5 and an annealing temperature of 70 °C 
(forward: 5′-AGGTCTCA|AGCTTCGATCAACTACGCAGACAG-3′, reverse: 
5′-AGGTCTCA|CTAGATGAGCTCGTCGACGTTCC-3′). This amplification step 
was also used to add BsaI sites and overhangs complementary to the HindIII and 
SpeI sites in the ITR plasmid. Amplicons were digested with BsaI-HFv2 as above. 
Digested ITR plasmid and step 2 library amplicons were bead purified, ligated, 
transformed and mini-prepped to generate the final plasmid library. For the earlier 
rounds of library cloning, creation of mutant cap genes was accomplished in a 
single cloning step since oligos did not contain BsaI sites, EcoRV sites or barcode 
sequences, enabling cloning directly into the corresponding position in the WT cap 
gene. Ligation sites and oligo and cap PCR primers for this single-step cloning were 
the same as above. Similarly, the final library cloning step to move the mutant cap 
gene sequences into the ITR plasmid remained the same.

The final plasmid library was transfected into HEK293T cells to produce 
viral particles. Cells were grown in DMEM (ThermoFisher, no. 10566016) 
supplemented with 10% fetal bovine serum (ThermoFisher, no. 10082147) and 
seeded in five-layer cell stacks (Corning, no. 353144) 2 d before transfection. 
Polyethylenimine (PEI) was used for transfection at a mass ratio of 3/1; 125 ug 
of adenovirus pHelper plasmid, 75 ug of an AAV rep plasmid and 1 ug of library 

plasmids were mixed with PEI, incubated for 20 min and added to cells. Media 
were changed completely at the time of transfection and replicate transfections 
were carried out in separate cell stacks. Here, the lower levels of library plasmid 
were chosen to reduce the number of plasmids transfected into individual cells, 
such that the potential for mosaic capsid formation and cross-packaging was 
minimized. Three days post-transfection, 5 M NaCl was added to the cultures  
for a final concentration of 0.5 M and cultures were incubated at 37 °C for 3 h. 
Following incubation, mixtures were transferred to fresh containers and incubated 
at 4 °C overnight. The next day, the resulting supernatants were run through 
0.22-µm PES filters (Corning, no. 431098); 40% PEG-8000 was then added to  
give a final concentration of 8%, and mixtures were incubated at 4 °C for 3 h. 
Samples were centrifuged at 3,000g for 20 min to pellet the PEG precipitate, and 
pellets were resuspended in 7 ml of DPBS. Viral genomes external to the capsid and 
carryover plasmid DNA were degraded with benzonase; a 10,000-fold dilution in 
benzonase (Millipore Sigma, no. 1.01695.0001) was added to resuspended pellets, 
and samples were incubated at 37 °C for 45 min. Encapsidated genomes were 
separated from the remaining cellular debris using iodixanol ultracentrifugation 
and concentration via size-exclusion spin filters as described previously19,33.  
Briefly, benzonase-treated samples were underlaid with an iodixanol gradient 
(Sigma, no. D1556) in polypropylene tubes (Beckman Coulter, no. 362183) and 
centrifuged at 242,000g for 1 h at 16 °C. Capsids were collected from the 40% 
iodixanol fraction and concentrated using a spin concentrator (Millipore Sigma, 
no. UFC910024) to generate the final purified pool.

Cap gene sequences remaining in the purified pool represent mutants 
viable for capsid assembly and genome packaging. Purified capsids were 
heat denatured at 98 °C for 10 min, and PCR was run with Q5 and an 
annealing temperature of 65 °C to amplify the mutant region of the cap 
gene (forward: 5′-GCTCAGAGAAAACAAATGTGGAC-3′, reverse: 
5′-GAACGCCTTGTGTGTTGACATC-3′). PCR reactions were carried out in 
the presence of EvaGreen (Biotium, no. 31000) and run on a BioRad CFX96 
quantitative PCR machine to ensure that reactions were stopped during the 
exponential phase. Illumina sequencing adapters and indices were added in 
a subsequent PCR. These PCR amplicons were sequenced with overlapping 
paired-end reads using Illumina NextSeq. Paired-end reads were merged to 
generate a consensus read using PEAR34, and read counts were calculated for  
every member of the designed library. Reads with a minimum Q score of 20 were 
selected for four technical plasmid replicates and three biological virus replicates 
(each with at least two technical replicates; Supplementary Fig. 2). Mutant fitness  
in the viral production assay was calculated by taking the ratio of mutant  
read counts in the viral library over the counts in the original DNA library, 
normalizing by the ratio of the WT sequence.

Measurement of viral genome abundances from tissues for the design  
of the A39 dataset was done via amplicon sequencing from purified vector  
genomes, with PCR protocols as described above. Three separate batches of 
virus were prepared and 3.5 × 1010 (batch 1), 2.3 × 1010 (batch 2) and 3.5 × 1010 
viral genomes (batch 3) of the C1 virus library were diluted in 200 µl of PBS and 
injected into mouse, four mice per batch, for 12 mice in total. Mice were all 8 weeks 
old, male and C57BL/6J. For each of the three batches, two mice were injected 
retro-orbitally and two intraperitoneally. After 1, 5 and 24 h, 30 µl of blood was 
drawn by facial bleed and frozen on dry ice, then at −80 °C. After 8 d, mice were 
dissected and tissue samples from liver, kidney, heart, lung, brain, spleen, muscle, 
skin, stomach and testis were frozen on dry ice, then at −80 °C. Approximately 
150 mg of each organ was ground using a disposable mortar and pestle (Kimble 
Chase, no. 749625-0010). DNA was purified from tissues using alkaline lysis 
(Qiagen, no. 27104), and from blood using the Qiagen MinElute Virus Spin Kit 
(no. 57704). Biodistribution was similar across both routes of administration. 
The overall effect on biodistribution of viral genomes for each organ and blood 
sample was calculated in R using deseq2 across measurements from multiple 
mice, combining 12 mice for blood and liver and four mice from batch 2 for the 
remaining organs. The animal protocol was approved by the Harvard Medical 
School Institutional Animal Care and Use Committee.

Random sampling of AAV2 mutants around WT. To generate a sequence at 
mutation distance k steps from WT AAV2, a uniform random draw from the set of 
28 WT + 28 insertion positions was first made. This mutation was then removed 
from the consideration set, and k – 1 subsequent draws without replacement from 
the remaining set of unsampled positions were made until k distinct mutation 
positions were selected. For each of the k positions selected, a residue type was 
selected uniformly at random: for insertion positions, all 20 standard amino acids 
were available; for substitution positions, the 19 amino acids distinct from WT 
were available. The set of k mutations relative to the WT AAV2 sequence then fully 
defines a mutant sequence at distance k from WT.

Baseline random sequence set generation. The train (7,908 variants) + tune 
(1,977 variants) random multi-mutant sequence sets were generated by sampling 
1,732–1,756 sequences at each distance of two to six steps away from WT, inclusive, 
and 288–290 sequences from seven to ten steps, inclusive. In total, the random 
multi-mutant sequence baseline experiment tested 9,885 unique sequences between 
two and ten steps, inclusive.
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Baseline additive model sequence set generation. The biodistribution of the C1 
library across liver, kidney, heart, lung, brain, spleen, muscle, skin, stomach, testis 
and blood samples was used to compute selection scores (relative enrichment of 
variants in tissue versus the original plasmid library) for each sample. All data 
contained information about production ability, because viral production is a 
necessary requirement for observation of viruses in each tissue and is therefore a 
common contributor to variance across all models. We generated mutants for  
the A39 set using biodistribution data rather than simply production data, to 
facilitate enrichment of variants with diverse biodistribution phenotypes within 
the additive set; however, we focused on training ML models using the production 
assay measurements because these higher-accuracy measurements enabled us 
to better assess the predictive power of our models during the final round of 
validation experiments.

We generated random mutants in three ways, by allowing the following:  
(1) substitutions across the region, (2) substitutions and insertions (but no more 
than one amino acid between two positions) and (3) substitutions but restricting 
the same insertions to the second half of the tile.

To design variants from single-mutant data with the additive model, we 
employed three types of Monte Carlo sampling, as follows:

 1. For each position along the region of interest, we constructed a Boltzmann 
distribution defined as 2si=T=Z

I
, where si is the tropism for amino acid i in 

that position as measured in the singles library (for different tissues) and 
Z ensures that the sum of probabilities across the position equals 1. The 
temperature parameter. T, controls the degree of fidelity to the best-proposed 
mutation according to the additive model, with higher T resulting in  
more diverse choices but lower expected fitness gain. We then combined 
mutations by scanning across the region of interest and sampling amino  
acids probabilistically for each position (potentially WT); T was fixed  
during the generation of each variant. However, to produce a diverse  
library we varied T between ~10−2 and ~100 (with increments of 0.18 in 
the exponent) for different variants. The A39 dataset contains 18,155 unique 
sequence variants generated using this process.

 2. For each position along the region of interest, we sampled uniformly from  
a subset of amino acids that had selective advantage above threshold ts.  
We varied ts between −1 and 2 to induce further variation. The A39 dataset 
contains 23,420 unique sequence variants generated using this process.

 3. For each variant, we would randomly sample multiple single edits and accept 
the variant only if the sum of effects from individual mutations was above  
the threshold, tm. We varied tm between 0 and 2.33 to induce variation.  
The A39 dataset contains 14,797 unique sequence variants generated using  
this process.

For variants with multiple mutations against WT reference, we would 
sometimes also sample related variants by individually introducing mutations 
included in the variant. The order in which these mutations was introduced was 
either greedy (meaning better mutations introduced first) or random; hence these 
sets of mutations would entail a stepwise ‘path’ from WT to the target variant. 
Additionally, we sampled around 11,000 unique variants randomly.

Construction of ML training datasets C1 + R2, C1 + R10 and R10 + A39. Our 
experimental design compares three libraries of training data, each containing 
different numbers of sequence variants that were sampled from a constrained 
interval of sequence space around the WT AAV2 sequence, using three distinct 
sampling strategies. The additive dataset (A39) provides a baseline training  
dataset in which mutants were generated first by measuring the complete set  
of single mutants and then generating diverse mutants using additive models  
(see preceding section). In contrast, the other two libraries (R2 and R10)  
exploit the power of random sampling to select sequences with multiple mutations 
sampled uniformly at random from the sequence space around the WT sequence, 
and are more efficient in that they require only one experiment to generate  
training data.

The C1 + R2 dataset (n = 2,868, 40% viable) contains (1) the complete set of 
single-site mutants, C1 (n = 1,112, 58% viable) and (2) a <1% random subset of 
possible double mutants, R2 (n = 1,756, 29% viable). The types of single mutants 
allowed in this study included all possible substitutions at the 28 residue positions 
considered and all possible single-residue insertions between and surrounding 
the 28 positions—that is, 29 possible insertion positions, resulting in 29 × 20 
(insertions) + 28 × 19 (non-WT substitutions) = 1,112 single-site mutants.

The C1 + R10 dataset (n = 9,020, 16% viable) contains (1) the complete set of 
single-site mutants, C1 (n = 1,112, 58% viable) and (2) a set of 7,908 randomly 
generated mutants with two to ten mutations (10% viable). Note that the randomly 
generated mutants are fully disjoint from the validation set discussed in the ML 
model training (Methods). While many of the 7,908 randomly generated mutants 
were nonviable, these negative examples still provided valuable information about 
the sequence space to aid in ML modeling during training.

The R10 + A39 dataset (n = 64,280, 56% viable) contains (1) A39, the 
56,372 mutants generated by the baseline additive single-site fitness model 
described in Methods (62% viable) and (2) R10, the same 7,908 sequences (with 
two to ten randomly generated mutants) as the C1 + R10 dataset (10% viable). 

Note that the R10 + A39 dataset does not contain the 1,112 single-site mutants (C1). 
Comparison between C1 + R10 and R10 + A39 explicitly tests the effect of training on 
a dataset that explicitly includes all single-mutant variants, versus a dataset that 
includes a large number of higher-order variants designed using single-variant data 
and tested in an additional round of data collection experiments.

Across all three libraries of training data, for each sequence variant we required 
a plasmid count >100 to provide some insulation from noisy mutant fitness 
measurements caused by low plasmid counts for specific variants. The resulting 
dataset contained at least four synonymous nucleotide sequences for each amino 
acid sequence variant present, and for each unique amino acid sequence present we 
took the highest observed fitness measurement across the synonymous nucleotide 
sequences that each had a plasmid count >100.

ML model experimental design overview. We use all three datasets to train 
classification models that predict whether a distant variant of the AAV2 capsid 
sequence is functional, as illustrated in Fig. 1b. To provide a baseline approach in 
which interactions between different mutations are not captured by the learned 
model, we trained logistic regression models. Although these models are restrained 
by their inability to capture higher-order interactions, they have the advantage 
that the number of free parameters is comparatively small, potentially avoiding 
the issue of overfitting that might temper the predictive ability of more complex 
models, in particular when trained using the smallest of our three training 
libraries. In addition, we also trained both convolutional and recurrent NN models 
using each of the three datasets. The CNN architecture was selected to assess the 
value of providing contiguous windows of local mutations as raw feature inputs 
to a deep NN, allowing it to assemble small local windows into larger aggregated 
receptive fields at deeper layers of the model. The RNN architecture was selected 
to assess the utility of having a stateful deep NN with aggregated knowledge 
of the mutations-incorporated N-terminal to a given mutation; specifically, a 
unidirectional, multilayered long short-term memory (LSTM) architecture was 
used. For all model architectures we used a simple one-hot representation of the 
input sequence data and supervised the model using binary labels for packaging, 
derived from the experimental measurements after taking into account the 
experimental noise present in the assay (Supplementary Fig 1).

Training ML models. Our cross-product of three model architectures (LR, CNN 
and RNN) and three distinct training datasets (C1 + R2, C1 + R10 and R10 + A39) 
resulted in nine categories of trained ML model (LR(C1 + R2), LR(C1 + R10) and 
RNN(R10 + A39)). Within each (architecture, dataset) category we trained 11 replica 
models, using distinct random initializations, to yield an ensemble model. Replica 
performance, specifically classification precision as a function of distance from 
WT, on a held-out random mutant validation set was used for termination of 
training via early stopping for each replica. To evaluate a given sequence, the mean 
model replica score of the ensemble was used; these 11-replica mean model scores 
were used for ranking sequences generated by both the model-based selection and 
model-guided design approach.

The CNN and RNN were optimized using the Adam algorithm (with learning 
rates of 0.001 and 0.010, respectively), while the TensorFlow logistic regression 
implementation used the FTRL algorithm with a learning rate of 0.01. The learning 
rates were selected via a hyperparameter sweep—selecting the learning rate with 
the best validation performance using the C1 + R10 training set for each model.  
All models were trained using a binary softmax cross entropy loss.

Models were regularized via early stopping using the implementation provided 
within ‘train_utils.EarlyStopper'. Model training progression was monitored using 
the hold-out validation set of sequences that was identical for every architecture. 
Early stopping halted training after the model’s precision on the validation set 
did not increase for ten evaluation periods. An evaluation period occurs every 
500 steps in our set-up, with a batch size of 25 examples per step. The mean and 
maximum wall times were 20.3 and 85.3 min, respectively.

Architecture selection and hyperparameter tuning for NN models. The 
complexity of the architectures tested varied from the simplest LR model,  
with only 1,161 parameters and no hidden layers, to the CNN model with 
55,189 parameters and four hidden layers (ConvPool, ConvPool, FC, FC) and, 
finally, to the most complex RNN (LSTM) model with 128,901 parameters  
and two hidden layers (FC, FC). All hyperparameter tuning was done while 
training on the fully random C1 + R10 dataset (n = 9,020) and evaluating against 
a single validation set comprised of randomly sampled 2–10× mutant sequences 
(n = 1,977); the validation set was also used for early stopping of training.  
Note that this validation set is fully disjoint from the random 2–10× mutant set 
incorporated into the R10 dataset.

The CNN model uses 55,189 parameters and four hidden layers:
•	 Input shape: (58, 20)
•	 Conv1d-relu-BN< Width=7, depth=12>
•	 Pool1d<width=2, stride=2>
•	 Conv1d-relu-BN< Width=7, depth=24>
•	 Pool1d<width=2, stride=2>
•	 FC1-relu-BN
•	 FC2-relu-BN

NAtuRE BiOtECHNOLOGy | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


LettersNature BiotechNology

The RNN model, a multilayer LSTM, uses 128,901 parameters with two hidden 
layers, each having 100 units:
•	 Input token shape: (20)
•	 LSTM cell layer 1 (100 units)
•	 LSTM cell layer 2 (100 units)

Retrospective model validation. Before using the trained ML model ensembles to 
propose new diverse sequence variants predicted to be viable, we used the baseline 
additive set of 56,372 multi-mutant variants (A39) as a held-out test set with which 
to compare the models trained using either the C1 + R2 or C1 + R10 dataset, both of 
which excluded the A39 set of sequences. We were surprised to find that while all 
models exhibited a degree of lift in their ability to accurately predict viable mutants 
far from WT, compared to the additive model used to select the baseline set, the 
performance of the NN models trained using the threefold larger C1 + R10 dataset 
(n = 9,020) was comparable to that obtained using the smallest C1 + R2 dataset 
(n = 2,868), which included only single and double mutants. We note that while 
the R2 and R10 datasets are randomly generated, they contain multiple examples of 
sequence variants for which the measured phenotype does not reflect an additive 
model given the C1 data. These cases are more difficult for the LR model to fit, 
providing a potential explanation for this performance difference compared to  
the NN models.

Generation of sequences via ML model-based selection. The pool of AAV2 
mutant sequences from which ML models were allowed to rank and select was 
created by randomly sampling sequences 100 million times for each mutation 
distance between five and 25, inclusive, thereby generating a total of 2.1 billion 
candidate sequences as shown in Fig. 1c. To randomly sample a sequence at 
distance n from WT, n indices between 0 and 58 (2× the number of positions 
in tile 21) were drawn at random (note, prefix insertions were not permitted). 
For each index a random non-WT amino acid residue was selected (for indices 
corresponding to insertion positions, any residue was permitted). Each of the 
ML models compared in this work was then used to evaluate the entire pool of 
2.1 billion sequences, selecting the top 1,000 at each mutation distance. These top 
1,000 sequences at each mutation distance were then used as ‘seed’ sequences for 
the model-guided sequence design process described below. The top 100 of the 
1,000 seed sequences at each distance from WT were also tested empirically for 
viability (before any model-guided sequence design); the performance of these 
top 100 sets is shown in Fig. 2 for each model, and these are referred to as the 
model-based selection set throughout this work.

Generation of sequences via ML model-guided design. To go beyond 
model-based selection, we developed a model-guided sequence design strategy 
to follow model gradients and find sequences with higher scores. Our previous 
experiment suggests that roughly 3,000 of the 100 million random candidates 
15 steps from WT will be viable, diminishing to just 100 for those 20 steps from 
WT. This is supported by a marked decrease in model confidence for sequences 
that are far from WT. We next asked whether the trained models' internal 
representation of the AAV2 fitness landscape could be used to ‘evolve’ seed 
sequences in promising directions by exploring local neighborhoods around 
randomly sampled candidate sequences predicted by the model to be viable.  
The 1,000 highest-scoring sequences at each distance from WT were selected  
by ML models (specifically in each case by an ensemble of 11 replica models  
with the same architecture, trained on the same training data) as seed sequences 
(with the top 100 at each distance experimentally evaluated).

Starting from these model-selected seed sequence variants, we performed 
an iterative mutation process. First, a random set of 250 single-mutation steps 
(disallowing movements towards WT) were scored using the model ensemble 
mean probability (Training ML models). The 50 highest-scoring candidates were 
passed forward for the next iteration of mutation. We terminated this process 
after 20 iterations because the resulting variants exceeded the most distant viable 
sequence variant discovered by the additive baseline strategy (21 steps from WT). 
After 20 iterations had been completed, the total set of evaluated sequences across 
all mutation levels was ranked by consensus score. This model-ranked set was 
greedily filtered for diversity, permitting the addition of a candidate sequence if it 
was at least three mutations away from a higher-scoring sequence already included 
in the set. These candidate sets were aggregated across all model-selected seed 
sequences, selecting the top 900 sequences at each distance between five and 25 and 
the top 500 sequences at distances 26–29. Most model-designed, viable sequences 
originated from viable seeds (Supplementary Fig 5), suggesting that viable 
sequences even further from WT may be discovered by increasing the number of 
iterative mutation rounds.

Prospective model validation. To truly test the hypothesis that a small amount 
of double-mutant data is sufficient to improve the models over the additive model 
trained using all single-site variants, we experimentally validated sequences 
proposed using multiple training strategies. This framework has the advantage that 
it also allows comparison of the randomly chosen training libraries with the much 
larger set of sequences designed using the simple additive model, as an alternative, 
information-rich training dataset.

The model-selected and model-designed sequences were labeled as either 
viable or nonviable by calculating the ratio of mutant read counts in the viral 
library over counts in the plasmid DNA library, and comparison to the ratio 
calculated for the WT sequence. To confirm that our results were robust to noise 
resulting from small absolute counts, we excluded from the reported results 
sequence variants with fewer than ten plasmid counts. Note that this threshold  
is more permissive than that used for the training data, reflecting our desire to 
avoid training the models on data with noisy labels. Furthermore, we confirmed 
that the reported trends—in terms of the performance as a function of distance 
from the WT sequence, and the diversity of model-designed sequences—were 
maintained if we imposed more stringent criteria. We first restricted to those 
sequences for which the viral counts from each of the three biological replicates 
agree that the sequence is either viable or nonviable. This dataset yielded 
100,929 viable sequences out of 172,664 model-designed sequences that met 
this criterion. In a second analysis, we removed the 2,055 viable sequences with 
<50 viral counts and verified that the reported trends still held using this slightly 
smaller set of viable sequences.

A surprising outcome of this experiment was that although the R10 + A39 dataset 
contained 5× and 25× more sequences than the C1 + R10 and C1 + R2 dataset, 
respectively, this abundance of training data did not always improve its ability 
to accurately identify viable sequences. In particular, the LR and RNN models 
trained using the R10 + A39 dataset were outperformed by their respective variants 
trained using the smaller C1 + R10 dataset, and in the RNN case also by the C1 + R2 
dataset. Only in the case of the CNN did the larger R10 + A39 training set result in 
a substantial improvement in performance, in particular in the ability to identify 
sequences further away from WT.

As a post hoc observation, across all models we empirically observed a 
decline in performance above 18 steps from WT. Since Fig. 2a shows that the 
model-selected seeds become notably less likely to be viable around eight to 
12 steps from WT, this decline is at least partly explained by the choice of 20 
maximum model-design iterations mentioned above.

Sequence clustering. To cluster each set of model-designed sequences, we first 
sorted them in descending order by number of mutations from WT AAV2 (that 
is, farthest first). For a given cluster radius, R, we start with the first sequence 
in the list and use that as a founder, then build a cluster around it by including 
every sequence <R edit distance from the founder sequence (we compute 
the edit distance using the method described in https://pypi.org/project/
python-Levenshtein/). We then repeat this process with the next remaining 
farthest-from-WT sequence in the yet-to-be-clustered set, and so forth, until all 
sequences have been placed into clusters.

Each set of designed sequences was of a different cardinality (for example, 
2.5× additive sequences versus ML-designed sequences) and, to make the sets 
comparable as presented in Fig. 4a,b, we downsampled all sequence sets uniformly 
at random to the smallest common size: 19,680 sequences. We then clustered the 
viable subset of these partitions as shown in Fig. 4, which quantifies the volume 
of sequence space successfully covered for various clustering radii. To provide 
an additional perspective, we separately clustered all downsampled sequences 
(viable + nonviable) for the statistics presented in Fig. 4b, which quantifies the 
volume of sequence space covered versus capsid design success rates (percentage 
viable) at a fixed cluster radius of 12 (mean AAV serotype diversity μ).

AAV2 homolog selection and alignment construction. To compare our 
diversification approach with natural diversity, we investigated the available 
sequences on NCBI for dependoparvoviruses. We found 415 complete coding 
sequence records (~1,000 gene products) for dependoparvoviruses (txid 10803) 
containing a structural or VP protein. These data were parsed to extract structural 
and VP1 proteins. Records lacking a complete structural or VP protein were 
discarded. We also ensured that we had included all common AAV VP1 sequences 
(12 sequences). This processing resulted in 310 unique sequences, which we aligned 
using Clustal Omega 1.2.4 (ref. 35). We then extracted the corresponding sequence 
to the AAV2 VP1 region of interest for each record to compute the statistics 
for natural diversity. We found that, for the 28-amino acid region of interest, 
dependoviruses show slightly less diversity than the 12 common serotypes (that 
is, many sequences are quite similar to each other, and to AAV2). Therefore, for 
comparison we used the 12 common serotypes as a stricter benchmark. All logo 
plots were generated using Skylign31.

Statistical methods. In Supplementary Fig. 2a we provide estimates of the 
Pearson correlation between replicates of the plasmid and virus libraries for the 
experimental tests of the prospective ML validation libraries. In each case, the 
Pearson correlation was calculated over 243,481 replicate sequence variants. In 
Supplementary Fig. 2b we provide an estimate of the Pearson correlation between 
the experiment in which the ML training data were generated and the ML 
validation experiment for n = 2,000 sequence variants, together with a P value that 
reflects the likelihood that this correlation would be seen by chance. The P value is 
calculated using a two-sided t-test with n – 2 degrees of freedom. In Supplementary 
Fig. 3 the box plots for each model type are derived from the area under the 
receiver operating characteristics computed for each of the 11 individual models.

NAtuRE BiOtECHNOLOGy | www.nature.com/naturebiotechnology

https://pypi.org/project/python-Levenshtein/
https://pypi.org/project/python-Levenshtein/
http://www.nature.com/naturebiotechnology


Letters Nature BiotechNology

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Experimental data for all three experiments are available at NCBI SRA under 
accession code PRJNA673640).

Code availability
The TensorFlow 1.3 API was used to implement and train all models using the 
architectures described in Methods. The training and validation datasets  
used to create each model are available as part of the experimental dataset  
released as described in Data availability. The code required to construct the  
A39 training data, and also to synthesize, process and analyze the experimental  
data, is provided for download (https://github.com/churchlab/Deep_
diversification_AAV), as well as the ipython notebooks that reproduced the 
analysis figures from the main text (https://github.com/google-research/
google-research/tree/master/aav).
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