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Various computational approaches have been developed for predicting cis-regulatory DNA elements in prokaryotic
genomes. We describe a novel method for predicting transcription-factor-binding sites in Escherichia coli. Our method
takes advantage of the principle that transcription factors frequently coregulate gene expression, but without
requiring prior knowledge of which groups of genes are coregulated. Using position weight matrices for 49 known
transcription factors, we examined spacings between pairs of matrix hits. These pairs were assigned probabilities
according to the overrepresentation of their separation distance. The functions of many open reading frames (ORFs)
downstream from predicted binding sites are unknown, and may correspond to novel regulon members. For five
predictions, knockouts with mutated replacements of the predicted binding sites were created in E. coli MG1655.
Quantitative real-time PCR (RT-PCR) indicates that for each of the knockouts, at least one gene immediately
downstream exhibits a statistically significant change in mRNA expression. This approach may be useful in analyzing
binding sites in a variety of organisms.

[Supplemental material including detailed methods is available online at www.genome.org and http://arep.med.
harvard.edu/ecoli_matrices/spacing/spacing_predictions.html.]

Although the pace of genome sequencing has been growing at an
exponential pace, much still remains to be understood about
how the genes in the various genomes are regulated. Even in
Escherichia coli, probably the most well-studied model organism,
the complete mechanism of transcriptional regulation of many
of its genes is still unknown, despite the fact that the E. coli
genome contains only ∼240 candidate transcription factors regu-
lating ∼4300 genes in total (Blattner et al. 1997; Robison et al.
1998). Although many genes in the E. coli genome are grouped
into separate clusters of coregulated genes (termed regulons), it is
likely that many of these regulons are parts of interconnected
transcriptional regulatory networks (Neidhardt 1996; Hengge-
Aronis 1999). In the yeast Saccharomyces cerevisiae, the results of
genome-wide binding analysis of 106 transcription factors indi-
cate that more than one-third of the promoter regions that were
bound by regulators were bound by two or more regulators, and
that there is a highly connected network of transcriptional regu-
lators (T. Lee et al. 2002). Furthermore, many of the genes in the
E. coli genome are still uncharacterized (termed URFs). If a given
URF (uncharacterized open reading frame) is found to be regu-
lated by one or more transcription factors, then it is a reasonable
hypothesis that they are members of the same regulon.

The presence of multiple copies of a given transcription fac-
tor’s binding site motif can be used to predict candidate target
genes. For example, a search of the Drosophila melanogaster ge-

nome for three or more optimal binding sites within a span of
400 bp for the transcription factor Dorsal resulted in the identi-
fication of two additional functional regulatory regions contain-
ing at least three Dorsal binding sites (Markstein et al. 2002).
Similarly, a search of the Drosophila genome for overrepresented
clusters of binding sites for the transcription factor Suppressor of
Hairless [Su(H)] found both known and logical targets of Su(H)
binding and regulation (Rebeiz et al. 2002). Another study
searched the Drosophila genome for overrepresented clusters of
binding sites for five different transcription factors important
early in anterior–posterior specification in the developing em-
bryo (Berman et al. 2002). Another recent study has searched for
clusters of binding sites for muscle-specific transcription factors
in the human genome (Frith et al. 2002). In addition, in E. coli
grammatical models have been used for the identification of
regulatory regions (Rosenblueth et al. 1996). Binding site matri-
ces for more than 55 E. coli transcription factors are presently
available (Robison et al. 1998; Thieffry et al. 1998). These data,
also known as position weight matrices (PWMs), can be used to
conduct searches of the genome to predict additional candidate
binding sites for the particular transcription factor (Robison et al.
1998; Thieffry et al. 1998; Hughes et al. 2000). Although studies
have shown that there is some interdependence of the nucleo-
tides of transcription-factor-binding sites (Man and Stormo 2001;
Bulyk et al. 2002; M.-L. Lee et al. 2002), a recent study indicates
that mononucleotide PWMs are a good approximation for use in
identifying high-affinity binding sites (Benos et al. 2002).

The TRANSCompel database on composite regulatory ele-
ments in eukaryotic genes provides information on composite
elements, containing two closely situated binding sites for dis-
tinct transcription factors, within a particular gene and experi-
mental results confirming cooperative action between the tran-
scription factors (Kel-Margoulis et al. 2002b). Similarly, the
Transcription Regulatory Regions Database (TRRD) contains
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information on genes, transcription-factor-binding sites, regula-
tory regions, locus control regions, and expression patterns (Kol-
chanov et al. 2002). Likewise, the TRANSFAC database contains
information on eukaryotic transcription factors and their known
binding sites (Matys et al. 2003).

There are several different algorithms presently in use for
finding sequence motifs shared by sets of genes (Bailey and Elkan
1995; Grundy et al. 1996; Roth et al. 1998; van Helden et al.
1998; Hertz and Stormo 1999; Bussemaker et al. 2000; Workman
and Stormo 2000; Liu et al. 2001, 2002). A large number of false
positives are generated if the search matrix is not specific enough
to discriminate true sites. It is more difficult to obtain a specific
search matrix in prokaryotes than in eukaryotes. Because of the
presence of operons in prokaryotes, there are often fewer in-
stances of each transcription-factor-binding site within the ge-
nome. In prokaryotes, each operon would have a single upstream
region containing regulatory sites, whereas in eukaryotes, each
gene would have its own upstream regulatory region.

Our hypothesis is that many high-scoring false positives can
be filtered out by an additional criterion: the condition that most
true binding sites co-occur with a second binding site, either for
the same transcription factor or a different one. The basis for this
assumption is twofold: (1) a transcription factor that regulates a
particular ORF often has multiple binding sites in the upstream
region either for purposes of binding or for simply increasing the
local concentration of that particular transcription factor; and (2)
ORFs tend to be coregulated by two or more transcription factors.

There are several different algorithms presently in use for
finding pairs of sequence motifs shared by sets of genes. One
approach combines a search algorithm for transcription-factor-
binding sites with a distance correlation function (Quandt et al.
1996; Frech and Werner 1997; Klingenhoff et al. 1999). Dyad
analysis assesses the statistical significance of each possible pair
of short oligonucleotides separated by a spacer of fixed length
but variable sequence (van Helden et al. 2000; Li et al. 2002).
Thus, this approach is well-suited for identifying binding sites for
transcription factors that tend to bind as dimers, with a linker
domain in the transcription factor separating the DNA binding
and dimerization domains. However, this approach at present
does not allow for variable spacers between two binding site mo-
tifs. This can be important either if the transcription factors have
a flexible interaction with DNA, or if the transcription factors do
not bind together, but rather simply coregulate highly overlap-
ping sets of genes. A similar approach is aimed at discovering
binding site motifs by modeling cooperative binding by tran-
scription factors within a user-specified pattern length (Guha-
Thakurta and Stormo 2001). A related effort aimed at identifying
so-called structured motifs, composed of two ordered parts sepa-
rated by a variable distance and allowing for substitution, has
been applied to a set of sequences upstream of a subset of E. coli
and Bacillus subtilis genes (Robin et al. 2002).

Likewise, there are several different ways that predicted tran-
scription-factor-binding sites can be tested. One way is to knock-
out the predicted transcription factor and see if the mRNA levels
of the ORF(s) physically downstream from the predicted binding
site(s) are either up- or down-regulated. However, several second-
ary effects may make interpretation of such data difficult (Lee et
al. 2002b). A better way to test the predicted binding sites is to
mutate the predicted site itself, so that no other genes regulated
directly by the transcription factor in question are immediately
expected to be up- or down-regulated. Any other genes whose
expression is up- or down-regulated in these mutants are then
secondary effects caused by a perturbation in the expression of
the gene(s) downstream from the predicted binding site.

In this paper, we describe a new approach we have devel-
oped to predict sets of two or more transcription-factor-binding

sites that coregulate the downstream genes in the E. coli genome.
We used a database of E. coli binding site weight matrices (Robi-
son et al. 1998), obtained by aligning upstream regions identified
from other researchers’ data, such as biochemical footprinting.
AlignACE, a Gibbs sampling strategy (Lawrence et al. 1993)
modified for use in identifying DNA sequence motifs (Roth et al.
1998; Hughes et al. 2000), was used to perform the alignments.
The Berg and von Hippel algorithm was used to construct the
matrices (Berg and von Hippel 1987). The ScanACE program was
used to perform the matrix searches (Hughes et al. 2000).

Pairs of candidate binding sites were then assigned probabil-
ity scores, according to how overrepresented the spacing between
the predicted binding sites is. Binding site substitutions were cre-
ated such that MG1655 genomic DNA contained mutant ver-
sions of the predicted binding sites, rather than mere deletions of
the predicted binding sites (see Fig. 1 for a summary of the bind-
ing site knockouts). Quantitative real-time PCR analysis indicates
that at least one of the genes immediately downstream from each
of the binding site knockouts exhibits a significant change in
mRNA expression.

RESULTS

Binding Site Predictions
All instances of biochemically footprinted DNA-binding sites for
55 different E. coli DNA-binding proteins in the literature were
assembled into a database previously (Robison et al. 1998). These
sites were used to compile matrices representing the nucleotide
frequencies of the natural binding sites identified in the foot-
printing assays. These matrices were used to search the entire E.

Figure 1 Summary of binding site knockouts. (Solid X) Predicted bind-
ing sites that were knocked out. (Dashed X) Knockouts of four predicted
LexA-binding sites in the gorR–arsR IGR that were not successful, possibly
because of lethality. Distances between genes are approximately to scale.
In the uppermost construct, two predicted ArgR-binding sites (cross-
hatched boxes) were knocked out in the aroP–pdhR IGR. In the construct
shown below that one, only one of the two predicted GalR-binding sites
(cross-hatched boxes) in the ppa–ytfQ IGR was knocked out; the pre-
dicted CRP site (stippled boxes) was not knocked out. The other con-
structs created successfully were knockout of three predicted PhoB sites
(cross-hatched boxes) in the dinJ–yafL IGR; knockout of three predicted
PhoB sites (cross-hatched boxes) in the yqeF–yqeG IGR; knockout of four
predicted MetJ sites (cross-hatched boxes) in the ybdH–ybdL IGR. The
predicted ArgR-binding sites are 241 bp upstream of aroP and 260 bp
upstream of pdhR; the predicted PhoB sites are 103 bp upstream of dinJ
and 73 bp upstream of yafL; the predicted GalR and CRP sites are 164 bp
upstream of ppa and 129 bp upstream of ytfQ; the predicted MetJ sites
are 18 bp upstream of ybdH and 58 bp upstream of ybdL; the predicted
PhoB sites are 37 bp upstream of yqeF and 181 bp upstream of yqeG; the
predicted LexA sites are 328 bp downstream of gor and 556 bp upstream
of arsR (by “upstream,” here we mean the distance between the pre-
dicted binding sites and the start codon of the gene).
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coli genome for potential new binding sites for each of the 55
DNA-binding proteins (Robison et al. 1998). For each pairwise
combination of search matrices, we calculated the spacings be-
tween each pair of matrix hits. The predicted pairs of sites were
ranked according to the probability of obtaining the observed
number of pairs of sites separated by that distance or similar
distances, given the number expected by chance for that particu-
lar distance or range of distances (see Table 1). Pairs of sites with
significant spacings are listed in Table 1 and on our Web site
(http://arep.med.harvard.edu/ecoli_matrices/spacing/spacing_
predictions.html).

For example, it is highly significant that there are eight pairs
of ArgR-binding sites separated by 3 bp found in the genome by
our search matrices. Seven of these pairs were previously de-
scribed in the literature; one pair is new. This new pair of ArgR
sites lies in the aroP–pdhR intergenic region (IGR; see Fig. 1). A
complete listing of our results and predictions is found at www.
genome.org and http://arep.med.harvard.edu/ecoli_matrices/
spacing/spacing_predictions.html. We have not included predic-
tions from six of the 55 search matrices in our ranked list of
predictions because these six search matrices (DnaA, Hns, IHF,
Lrp, RpoS, RpoD) are extremely nonspecific and yield a large
number of hits in the genome.

Binding Site Knockouts
Of the top-scoring predictions, we selected five based on biologi-
cal interest (see Table 1). The following genomic knockouts of
five sets of predicted motifs were created in MG1655 E. coli: two
ArgR sites in the aroP–pdhR IGR, a single GalR site in the ytfQ–ppa
IGR, three PhoB sites in the dinJ–yafL IGR, three PhoB sites in the

yqeF–yqeG IGR, and four MetJ sites in the ybdH–ybdL IGR. Dupli-
cate knockout clones were isolated for three of these five sets of
predicted sites. Additionally, a genomic knockout of two pre-
dicted LexA sites upstream of arsR was attempted, but because no
knockouts were isolated out of 78 colonies screened, it is possible
that this knockout may be lethal.

The knockouts created are not mere deletions of the pre-
dicted transcription-factor-binding sites, but, rather, they are
substitutions of the most information-rich bases in the motif
with those found with least frequency in a given transcription
factor’s footprinted binding sites (see Fig. 2). Furthermore, the
replacement sequences were verified to ensure that they neither
destroyed overlapping sites for other known transcription fac-
tors, nor created new potential sites.

Quantitative Real-Time PCR Assays
The results of triplicate quantitative real-time PCR assays are
shown in Table 2. These data indicate that at least one of the
genes immediately downstream from each of the five binding
site knockouts exhibits a significant change in mRNA expression.
This indicates that the predicted binding sites, which were mu-
tated in the binding site knockout strains, are most likely real and
involved in regulation of these downstream genes.

Negative-control quantitative real-time PCR assays con-
sisted of mispairings between binding site knockout RNAs and
primer/probe pairs (i.e., quantitative real-time PCR assays were
performed on genes assayed in this project, but not downstream
from the binding site knockouts in the particular assayed RNA).
Out of 10 such mispairings, eight resulted in essentially no
change (see Supplemental material available online at www.

Table 1. Predicted Sites That Were Experimentally Tested

Predicted pairs with ≥0 separation

Ranking Site 1, site 2 Predicted regions Probability Separation

1 ArgR, ArgR aroP–pdhR 9.1 � 10�12 3 bp
8 LexA, LexA arsR 6.7 � 10�7 0–30 bp
9 GalR, CRP ppa–ytfQ 1.6 � 10�6 0 bp

Predictions from analysis of overlapping sitesa

Ranking Site 1, site 2 Predicted regions Significance index Separation

7 PhoB, PhoB dinJ–yafL, yqeF–yqeG 2.3 � 10�12 0 bp
14 MetJ, MetJ ybdH–ybdL 6.0 � 10�12 0 bp

Predicted sites are ranked according to the probability of obtaining the observed number of hits for the most overrepre-
sented bin or spacing, given the number expected by chance for that particular bin or spacing (“separation”). Predictions
coming from our analysis of pairs separated by �0 bp and predictions from our analysis of overlapping sites are treated
separately (see Methods).
aThe yqeF–yqeG and dinJ–yafL IGRs each contain three adjacent 11-bp PhoB-predicted sites; the ybdH–ybdL IGR contains
four adjacent 8-bp predicted MetJ sites. For PhoB and MetJ, we searched the genome with a matrix consisting of two
adjacent sites, because a matrix consisting of a single site is not specific enough to be useful. Thus, triplets of the sites
presented above showed up in our analysis as overlapping dimers of sites (two 22-bp matrix hits overlapping by 11 bp in
the case of PhoB, or two 16-bp matrix hits overlapping by 8 bp in the case of MetJ). In addition, we constructed a highly
specific 33-bp matrix from all known and footprinted triplets of PhoB sites, which identifies a very small number of sites in
the genome, including the known sites and the dinJ–yafL and yqeF–yqeG IGRs. We also constructed a highly specific 24-bp
matrix from all known and footprinted triplets of MetJ sites, which identifies only one new IGR in the genome in addition
to the known ones (the ybdH–ybdL IGR). This matrix actually predicts two 24-bp sites in the ybdH–ybdL upstream region
overlapping by 8 bp (i.e., a 32-bp pattern consisting of four consecutive motif instances). The fourth 8-bp site is weak,
however; it does not show up when searching with the shorter 16-bp matrix. PhoB and MetJ also both showed up as highly
significant in our spacing analysis with the pattern consisting of two dimers of sites separated by 0 bp (i.e., four adjacent
sites—a 44-bp pattern for PhoB with probability 4.2e-6, or a 32-bp pattern for MetJ with a probability 1.1e-7). However,
only known sites contributed to these spacing patterns; thus, there are no new predictions fitting this pattern. For both
PhoB and MetJ, there are more footprinted sites with triplets of adjacent sites than strings of four adjacent sites. Our
predictions in the table were based on significant triplets of sites.
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genome.org). One negative control that resulted in a significant
change was pdhR in the strain containing MetJ-binding site
knockouts in the ybdH–ybdL IGR. YbdH is a hypothetical oxido-
reductase, and YbdL is a hypothetical aminotransferase; it is pos-
sible that misregulation of ybdH and/or ybdL might impact gly-
colysis and the TCA cycle, causing a change in expression of
pdhR. The other negative control that resulted in a change was
aroP in the strain containing PhoB binding site knockouts in the
yqeF–yqeG IGR. The functions of these proteins are unknown; it is
possible that misregulation of yqeF and/or yqeG might cause a
change in expression of aroP.

Transcription Factor Knockouts
Another way to test our transcription-factor-binding site predic-
tions is to knock out the predicted transcription factor and see if
the mRNA levels of the ORF(s) physically downstream from the
predicted binding site(s) are either up- or down-regulated. How-
ever, several secondary effects may make interpretation of such
data difficult. For example, there may be genes regulated by the
knocked out transcription factor that can then up- or down-
regulate the genes physically downstream from the predicted
binding site, and this indirect regulation may confound correct
interpretation of the data (Lee et al. 2002b). Nevertheless, as a
demonstration of this approach in comparison to the binding
site knockout approach, we examined the effects of an argR
knockout on pdhR expression (see Table 2 and Fig. 3). The results
from analysis of the argR knockout are consistent with the results
from analysis of the strain withmutated ArgR-binding sites in the
aroP–pdhR IGR. The slight differences in expression level of pdhR
in the argR knockout as compared with in the ArgR-binding sites
knockout might be due to secondary effects of deleting argR,
which is predicted to regulate other transcriptional regulators
(data not shown).

Primer Extension Assays
In primer extension experiments using the ArgR-binding sites
knockout, a 1.2-fold derepression of pdhR expression was ob-
served (see Fig. 3). This is consistent with the 2.4-fold derepres-
sion of pdhR observed by quantitative real-time PCR. It is also
consistent with the 1.5-fold pdhR derepression observed in a
primer extension assay of an argR transcription factor knockout
(data not shown).

Affymetrix Oligonucleotide Array mRNA
Expression Analysis
Affymetrix oligonucleotide arrays (Affymetrix 2002) were used to
perform genome-wide mRNA expression analysis of duplicate
wild-type and binding site knockout strains, to identify the sec-
ondary effects of a knockout of the three PhoB sites in the yqeF–
yqeG IGR. This binding site knockout was chosen because it re-
sulted in the most dramatic fold change, as assayed by quantita-
tive real-time PCR, of one of the genes immediately downstream
from the mutated binding sites (i.e., fivefold decreased expres-
sion of yqeF). However, the genome-wide mRNA expression data
indicated that only three other genes, ybaM, vsr, and gcvP,
showed changes at least as great as yqeF. Because it is unclear how
these three genes might fit together into a biological pathway, no

Table 2. Results of Quantitative Real-Time PCR Assays

Transcript assayed Strain Expression ratio

aroP ArgRpdhR clone 1 1.3 (0.33)
pdhR ArgRpdhR clone 1 2.4 (0.35)
ppa GalRytfQ clone 1 1.11 (0.45)
ytfQ GalRytfQ clone 1 1.34 (0.23)
ybdH MetJybdH clone 1 1.19 (0.21)
ybdH MetJybdH clone 2 1.55 (0.21)
ybdL MetJybdH clone 1 3.25 (0.36)
ybdL MetJybdH clone 2 3.82 (0.40)
yqeF PhoByqeG clone 1 0.208 (0.049)
yqeF PhoByqeG clone 2 0.203 (0.051)
yqeG PhoByqeG clone 1 1.35 (0.18)
yqeG PhoByqeG clone 2 1.39 (0.26)
dinJ PhoByafL clone 1 0.73 (0.16)
dinJ PhoByafL clone 2 0.85 (0.22)
dinJ PhoByafL clone 3 0.68 (0.18)
yafL PhoByafL clone 1 3.0 (0.6)
yafL PhoByafL clone 2 2.2 (0.5)
yafL PhoByafL clone 3 2.2 (0.5)
pdhR �argR clone 1 1.3 (0.43)

Ratios resulting from mean values of triplicate assays are shown, with
standard deviations given in parentheses. Ratios given are relative to
wild-type MG1655 grown under the same conditions as the particular
knockout strain. In the notation for naming the binding site knock-
outs, the name of the transcription factor whose site(s) have been
mutated is followed by the name of one of the genes downstream of
the mutated site(s). For example, “ArgRpdhR” indicates that at least
one ArgR-binding site was knocked out upstream of the pdhR gene.

Figure 2 Design of binding site knockouts. Only the binding site sub-
stitution knockouts for ArgR, GalR, and PhoB are shown. The same strat-
egy was followed in designing the MetJ- and LexA-binding site mutations
(data not shown).

Figure 3 Primer extension assay of ArgR-binding site knockout in the
aroP–pdhR intergenic region. The levels of pdhR transcript were mea-
sured, using the 23S-specific internal probe as an internal quantitation
control for each RNA sample.
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conclusions could be drawn regarding the possible function of
yqeF.

DISCUSSION
Many of the binding site knockouts are upstream of uncharac-
terized genes or operons. Some of these URFs have important
homologies for connecting them to regulons via the predicted
transcription-factor-binding sites. For example, ytfQ, which is
downstream from predicted GalR- and CRP-binding sites, shows
significant homology in a BLAST search to a number of D-ribose-
binding periplasmic proteins (E-value = 2 � 10�29) and ribose
ABC transporters from a few different prokaryotes, including ho-
mology to D-galactose-binding periplasmic proteins (E-
value = 5 � 10�5). Its highest scoring hit is for homology to a
bifunctional carbohydrate binding and transport protein (E-
value = 2 � 10�30). These homologies provide further support
that this URF might be regulated by transcription factors known
to regulate galactose metabolism.

In addition, the results of such experiments can indicate
interconnections between various regulons. For example, our
data indicate that the two ArgR sites, separated by 3 bp, predicted
upstream of the pdhR–aceEF–lpd operon are functional. ArgR is
presently only known to regulate genes specifically involved in
arginine biosynthesis, whereas PdhR is the repressor of the pyru-
vate dehydrogenase complex. However, the product of the pyru-
vate dehydrogenase complex, acetyl-CoA, is needed in the first
step of arginine biosynthesis. This biochemical pathway infor-
mation further supports our finding that the ArgR-binding sites
upstream of the pdhR–aceEF–lpd operon are functional, and thus
that the ArgR regulon is interconnected with the PdhR regulon.

Furthermore, once a predicted site has been demonstrated
to be functional, that site can then be added to the set of se-
quences used to generate a binding site weight matrix for the
given transcription factor. That refined weight matrix can then
be used in a new search of the E. coli genome to identify a refined
list of predicted binding sites. This set of genes can then be ana-
lyzed to determine how the genes are involved in a regulon and
thus to further characterize the functions of these genes. More-
over, if the gene(s) physically downstream from the predicted
binding site(s) have not yet been functionally characterized, then
the functions of the genes affected in a secondary manner should
aid in assigning the URF to a regulon.

A critical point in these experiments is selection of the
proper culture conditions to permit analysis of the predicted
binding site. The culture conditions used must be those that will
induce expression of the transcription factor in the wild-type
cells. Otherwise, if the transcription factor is not expressed, then
none of the transcription factor’s binding sites will be bound,
and comparing wild-type versus the knockout will not provide
data on the predicted binding site.

A particularly interesting finding is that despite the fact that
the predicted binding sites we examined were all in divergent
promoters, the immediately downstream genes in either direc-
tion were not affected equally by the binding site mutations. For
example, mutating the three PhoB sites in the yqeF–yqeG IGR
resulted in 5.0-fold down-regulation of yqeF, and 1.4-fold up-
regulation of yqeG. Similarly, mutating the four MetJ sites in the
ybdH–ybdL IGR resulted in 1.4-fold up-regulation of ybdH and
3.6-fold up-regulation of ybdL. These different changes in gene
expression could not be explained by the distance between the
predicted sites and the affected gene; that is, considering these
two pairs of divergently transcribed genes, the genes closer to the
predicted sites do not as a rule exhibit a stronger up- or down-
regulation as a result of the binding site knockouts as compared
with the genes that are farther away from the predicted sites. It is

unclear what may be the mechanism of this differential regula-
tion at divergent promoters. In constructing the binding site mu-
tations, care was taken neither to disrupt overlapping transcrip-
tion factor binding sites, nor to create new sites for the 55 E. coli
transcription factors for which weight matrices have been pub-
lished. Nevertheless, it is possible that some as-yet-unknown
binding site, whose binding factor functions in a directional
manner, or some other kind of DNA sequence element that func-
tions in an orientation-dependent manner, was either disrupted
or created in the binding site knockouts. For example, a se-
quence-dependent bend upstream of the rRNA promoter P1 in E.
coli is responsible for high promoter activity, and both the dis-
tance and angular orientation of the bent DNA is crucial for the
degree of activation (Zacharias et al. 1991). Similarly, the tran-
scription factors that bind the predicted binding sites might
function in a directional manner. It is also possible that some
as-yet-unknown higher-order chromosome structure occurs that
results in differential expression of the genes at these divergent
promoters. For example, despite extensive overlap of regulatory
elements, the divergently transcribed E. coli genes nrfA and acsP1
are regulated independently; evidence indicates that a nucleo-
protein structure in this intergenic region allows these genes to
be regulated independently (Browning et al. 2002).

Initial site clustering approaches that simply consider a cer-
tain number of sites within a given genomic sequence window
size recently have produced some initial successes in predicting
DNA regulatory elements in eukaryotic genomes (Wagner 1999;
Frith et al. 2001, 2002; Pilpel et al. 2001; Berman et al. 2002;
Halfon et al. 2002; Kel-Margoulis et al. 2002a; Markstein et al.
2002; Rebeiz et al. 2002). A binding site co-occurrence approach
(Sudarsanam et al. 2002) that considers the spacing between
transcription-factor-binding site motifs, such as the one we pre-
sent here, might be useful in further improving the accuracy with
which regulatory binding sites are predicted in higher eukaryotic
genomes.

METHODS

Binding Site Prediction
Only those matrix hits that occurred within noncoding regions
were analyzed because most experimentally confirmed binding
sites for transcription factors occur in noncoding regions (of
course, this could be at least in part caused by a bias in where
people traditionally have looked for transcription-factor-binding
sites). We used no size restrictions on noncoding regions; any
nucleotide that does not code for protein is called noncoding in
our analysis. All matrix hits scoring above two standard devia-
tions below the mean of the scores of the known footprinted
(input) sites (Robison et al. 1998) were used in the spacing analy-
sis. The assumption that scores of sites follow a normal distribu-
tion appears to be valid, and the vast majority of known sites fall
within two standard deviations of the mean (Robison et al.
1998). The matrix pairs were ranked according to either their
most significant single spacing between 0 and 500 bp (e.g., ex-
actly 3 bp) or their most significant spacing bin (McGuire 2000).
Eight different spacing bins were examined (the bins including
separation distances 0–30 bp, 30–60 bp, 60–90 bp, 0–100 bp,
100–200 bp, 200–300 bp, 300–400 bp, and 0–450 bp).

The rankings were based on the probability of obtaining the
observed number of hits for the most overrepresented bin or
spacing, given the number expected by chance for that particular
bin or spacing. This number expected by chance was determined
in the following manner:

E�x� = Na � Nb � ��x − c�, (1)

where Na and Nb are the number of hits in the genome using
search matrices a and b, c is a correction factor to account for the
lengths of the search matrices, and �(x) is the probability that
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two randomly chosen noncoding base pairs are separated by a
distance x. �(x) was computed by tabulating the actual frequen-
cies of occurrence of separations between all pairwise combina-
tions of noncoding bases in E. coli. �(x) is a decreasing function
of x (McGuire 2000). When we refer to the spacing between ma-
trix hits, we are referring to the distance between the end of the
first search matrix and the beginning of the second search ma-
trix. Thus, the length of the first search matrix, c, is needed in
equation 1.

The probability P(x) of obtaining at least the observed num-
ber of pairs, obs(x), at each spacing x between 0 and 500 bp, given
Na · Nb trials, where the probability of observing a pair at this
spacing in a single trial is �(x � c), was then calculated:

P�x� = 1 − �
s=0

obs�x�−1�Na � Nb

s � � ��x − c�s � �1 − ��x − c��Na�Nb−s (2)

where s is an index variable in the summation.
By checking 500 different spacings, multiple hypotheses are

being tested. To obtain a more reliable probability value, the
probability of observing obs(x) sites at any single spacing within
a spacing range that includes x (i.e., 0 to x bp), P(x) was summed
over this range of x values. All pairs of search matrices that have a
spacing x for which this adjusted value for P(x) is <0.05 were saved.

Similarly, the probabilities of obtaining the observed num-
ber of hits within the eight different spacing bins was calculated:

Pbin = 1 − �
s=0

obs�bin�−1�Na � Nb

s � � �s � �1 − ��Na�Nb−s, (3)

� = �
x=0

binsize

�(x − c), (4)

obs�bin� = �
x=0

binsize

obs�x�, (5)

where obs(bin) is the observed number of hits in that spacing bin.
In the case in which the two search matrices are identical,

the number of hits expected by chance should be determined in
the following manner:

E�x� =
Na � �Na − 1�

2
� ��x − c� (6)

The equations for P(x) and Pbin can be modified accordingly.
The matrix pairs were ranked according to their values for

Pbin for each of the spacing bins, and all those that had values for
Pbin(xmin…xmax) <0.05 were saved.

In our calculation of probabilities, we assumed the presence of
two independent sites. This assumption is not valid in the case of
overlapping sites. However, we found it useful to calculate a “sig-
nificance index” for the overlapped data in the same way as we
calculated the probabilities above. These values are not comparable
with the probabilities listed above because of the nonindependence
of the two overlapped sites, but we found this index to be useful for
comparisons within our analysis of the overlapped data.

Because most of the search matrices, even the more nonspe-
cific ones such as DnaA, Hns, Ihf, Lrp, OmpR, Fis, NarL, TyrR, and
RpoS, are biased in their distribution within the noncoding re-
gions, the false positives can be expected likewise to be distrib-
uted nonrandomly. This nonrandomness is caused by variation
in AT content for different noncoding regions in E. coli. A sharp
dip in AT content at ∼10 bp upstream of the start codon is due to
the Shine-Dalgarno sequence (AGGAGG). Furthermore, AT con-
tent dips between 10–40 bp downstream of the stop codon. This
dip is partially explained by the presence of BIMEs, which have a
42% AT content (the overall AT content for noncoding regions in
E. coli is 58%). This background nonrandomness in the locations
of false-positive search matrix hits results in a nonrandom dis-
tribution of spacing distances as well. We calculated the ratio of
the number of observed pairs at a spacing x to the expected num-
ber of pairs at this spacing, R = obs(x)/E(x). Typical values of R are

∼1.5–2. A cutoff of R = 5 was used to exclude the majority of the
nonspecific hits. The most nonspecific matrices, which produced
>10,000 hits upon search of E. coli noncoding regions, were not
included for purposes of predicting binding sites (McGuire 2000).

Strains
For cloning purposes, E. coli DH5� was used. The binding site
knockouts were created in MG1655 E. coli, which was used by
Blattner et al. (1997) for the determination of the E. coli genome
sequence. The transcription factor knockouts were created in EMG2
E. coli, so that they could be grown competitively with a set of 46
other transcription factor knockouts created in EMG2 (Phillips 2000).

Binding Site and Transcription Factor Knockouts
For both the binding site knockouts and the transcription factor
knockouts, ∼500 bp of flanking DNA 5� and 3� of the sequences to
be replaced were amplified in two separate PCR reactions (Ni and
No primers were used to amplify the N-terminal flanking sequence,
and Ci and Co primers were used to amplify the C-terminal flank-
ing sequence). Restriction sites were incorporated into the No and
Co primers to permit unidirectional ligation into the plasmid
pKOV. The plasmid pKOV is a stuffer-containing derivative of
pKO3. For the binding site knockouts, the Ni and Ci primers con-
tained the replacement binding site sequences. For the transcrip-
tion factor knockouts, the Ni and Ci primers contained a 33-bp tag
sequence. The two PCR products representing the N- and C-
terminal flanking regions were reamplified in a second PCR reac-
tion using the No and Co primers before cloning into pKOV. A list
of primers used in creating the transcription factor knockouts can
be found in Supplemental material. The transcription factor knock-
outs resulted in replacement of the coding sequence from start to
stop with the 33-bp tag sequence. Cointegration, resolution, and
elimination of the plasmid were performed as previously described
(http://arep.med.harvard.edu/labgc/pko3.html; Phillips 2000).

The binding site substitutions were created by modifying
the current pKOV knockout scheme (Link et al. 1997; http://
arep.med.harvard.edu/labgc/pko3.html) such that (1) no univer-
sal tag is included on the inner knockout primers; and (2) the
inner primers are not exact complements of wild-type MG1655
genomic DNA, but rather contain mutant versions of the pre-
dicted binding sites. Care was taken neither to disrupt overlap-
ping transcription factor binding sites, nor to create new sites for
the 55 E. coli transcription factors for which weight matrices have
been published. For example, the nucleotide substitutions cre-
ated in the three predicted PhoB binding sites in the dinJ–yafL
IGR were carefully chosen so as to maximally disrupt the PhoB
motif while minimizing disruptive mutation of the two overlap-
ping ArcA sites. A list of primers used in creating the binding site
knockouts can be found in Supplemental material.

Chloramphenicol-sensitive colonies were tested by PCR. For
the transcription factor knockouts, the Co and No primers were
used in PCR. Because these primers flanked the gene, the size of
the PCR product indicated whether the template was from a wild-
type or deletion strain. For the binding site knockouts, analytical
PCRs were performed using the Co primer in conjunction with a
primer representing either the wild-type or mutant binding site,
in two separate PCR reactions. These primers were designed to be
complementary to either the wild-type binding site sequence or
the mutant binding site sequence. See Supplemental material for
a listing of these primer sequences.

Binding site knockouts were verified by sequencing. See
Supplemental material for a listing of the sequencing primers.

PCR
All PCRs were performed essentially as previously described
(http://twod.med.harvard.edu/labgc/estep/longPCR_protocol.
html).

Media and Culture Conditions
Duplicate wild-type and binding site knockout strains were
grown under the following conditions (Neidhardt et al. 1974): (1)
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knockout ArgR-binding sites: 37°C; 1� M9 minimal, 0.4% glu-
cose, 1 mM arginine; to ∼0.3 OD600; (2) knockout GalR-binding
sites: 37°C; 1� M9 minimal, 0.4% glucose; to ∼0.35 OD600; (3)
knockout MetJ-binding sites: 37°C; 1� M9 minimal, 0.4% glu-
cose, 1 mM methionine; to ∼0.5 OD600; (4) knockout PhoB-
binding sites: 37°C; 1� MOPS, 0.4% glucose, 0.066 mM K2HPO4
(phosphate-limited); to ∼0.25 OD600. These conditions were cho-
sen to induce expression of the transcription factor whose pre-
dicted sites were knocked out.

Duplicate wild-type and transcription factor knockout
strains were grown under the conditions listed below. The argR
knockout strains were grown at 37°C in M9 minimal medium
with 11 mM (0.2%) glucose, 0.5% casamino acids, 1 mM arginine
(Charlier et al. 1992; Tian et al. 1994), to ∼0.82 OD600. For the
primer extension assays, these cultures were grown to 0.7–0.9
OD600. These conditions were chosen to induce expression in
wild-type cells of the knocked out transcription factor.

RNA Isolation and Purification
Bacterial lysis and isolation of crude total RNA was achieved using
hot acid phenol (Mangan et al. 1997). Briefly, cultures were pelleted
by centrifugation at 5000g. Cell pellets were stored at �80°C. Cells
were resuspended in acidic phenol:chloroform, 5:1 solution (pH
4.5; Ambion), prewarmed at 65°C. RNA was extracted three times
with acidic phenol:chloroform by addition of acidic phenol:chlo-
roform, vortexing, incubating for 3 min at 65°C, incubating for 3
min on ice, then centrifuging for 5min. The RNAwas purified once
with chloroform at room temperature, ethanol-precipitated, and
resuspended in DEPC-treated H2O. RNA samples were quantified at
A260 and A280 using a spectrophotometer.

Primer Extension Analysis
Primer extension analysis was performed as described before
(Sambrook et al. 1989). Briefly, 10 µg of total cellular RNA,
[�-32P]-end-labeled gene-specific probe, and [�-32P]-end-labeled
23S-specific probe were heated for 90 min at 65°C in hybridiza-
tion buffer and then slowly cooled down to allow for specific
annealing of the probes. The 23S-specific probe served as an in-
ternal quantitation control for each RNA sample. Afterward, a
mix of AMV reverse transcriptase, actinomycin D, and dNTPs in
reverse transcription buffer was added at 42°C and the reaction
was allowed to proceed for 1 h. The reaction was then incubated
with RNase I for 15 min at 37°C. The products were purified by
phenol:chloroform extraction and ethanol precipitation, and
then run on denaturing acrylamide gels. The gels were scanned
on a Molecular Dynamics Storm PhosphorImager and quantified
using ImageQuant software. Sequences of the primers used as
probes can be found in Supplemental material.

Real-Time RT-PCR Primers and Fluorogenic Probes
PCR primers and fluorogenic probes for the genes of interest were
designed using DNASTAR PrimerSelect software. The rrlH ribo-
somal RNA gene was used as the internal control gene against
which all other genes were normalized. Probes were selected such
that their Tms were ∼7°–10°C higher than the matching primer
pair. The dual-labeled fluorogenic probes contained an FAM re-
port dye covalently attached at the 5�-end and a BHQ1 quencher
dye covalently attached at the 3�-end. These probes were synthe-
sized and HPLC-purified by BioSearch Technologies, Inc. A listing
of primers and fluorogenic probes used in the quantitative real-
time PCR assays can be found in Supplemental material.

Real-Time RT-PCR Amplification
RT-PCR reactions were carried out in iCycler IQ Real-Time Detec-
tion Systems (Bio-Rad). SuperScript One-step RT-PCR with Plati-
num Taq kits (Invitrogen) were used for all RT-PCR amplification
in a total volume of 50 µL, which contained 200 ng of total RNA,
5 mM MgSO4, 500 nM forward and reverse primers, and 200 nM
fluorogenic probe. RT-PCR amplification for each RNA sample
was performed in triplicate wells. One “no RT” (without reverse

transcriptase) control for each RNA sample and one “no RNA”
(substituted RNA with dH2O) control for each primer and probe
set were also performed. The one-step RT-PCR condition is as
follows: 15 min at 50°C and 5 min at 95°C, followed by a total of
45 two-temperature cycles (15 sec at 95°C and 1 min at 60°C).
Relative gene expression data analysis was carried out with the
standard curve method (Heid et al. 1996; Winer et al. 1999).

mRNA Expression Analysis Using Affymetrix
Oligonucleotide Arrays
Genome-wide mRNA expression analysis using Affymetrix
GeneChip oligonucleotide arrays was performed essentially as
described previously. Briefly, to enrich for mRNA, reverse tran-
scriptase and primers specific to 16S and 23S rRNA were used to
synthesize cDNAs from total RNA. Then, rRNAs were removed by
incubation with RNase H, which specifically digests rRNA within
an RNA:DNA hybrid. The cDNAs were then removed by DNase I
digestion, and the enriched mRNA was then purified on QIAGEN
RNeasy columns. The purified, enriched mRNA was fragmented
by heat and ion-mediated hydrolysis, and labeled at the 5�-ends
with [�-S]ATP using T4 polynucleotide kinase. The thiolated RNA
was then labeled with PEO-iodoacetyl-biotin, and hybridized to
the chip. After washing, the chip was stained with streptavidin,
followed by staining with biotin-conjugated anti(streptavidin) an-
tibody, and then finally by phycoerythrin-conjugated streptavidin.
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