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Abstract

Tandem mass spectrometry fragments a large number of molecules of the same pep-

tide sequence into charged molecules of pre�x and suÆx peptide subsequences, and then

measures mass/charge ratios of these ions. The de novo peptide sequencing problem is

to reconstruct the peptide sequence from a given tandem mass spectral data of k ions.

By implicitly transforming the spectral data into an NC-spectrum graph G = (V;E) where

jV j = 2k+2, we can solve this problem in O(jV jjEj) time and O(jV j2) space using dynamic
programming. For an ideal noise-free spectrum with only b- and y-ions, we improve the

algorithm to O(jV j + jEj) time and O(jV j) space. Our approach can be further used to

discover a modi�ed amino acid in O(jV jjEj) time. The algorithms have been implemented

and tested on experimental data.
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1 Introduction

The determination of the amino acid sequence of a protein is an important step toward quan-

tifying this protein and solving its structure and function. Conventional sequencing methods

(Wilkins et al., 1997) cleave proteins into peptides and then sequence the peptides individ-

ually using Edman degradation or ladder sequencing by mass spectrometry or tandem mass

spectrometry (McLa�erty et al., 1999). Among such methods, tandem mass spectrometry

combined with high-performance liquid chromatography(HPLC) has been widely used as fol-

lows. A large number of molecules of the same but unknown peptide sequence are separated

using HPLCs and a mass analyzer such as a Finnigan LCQ ESI-MS/MS mass spectrometer.

They are ionized and fragmented by collision-induced dissociation. All the resulting ions are

measured by the mass spectrometer for mass/charge ratios. In the process of collision-induced

dissociation, a peptide bond at a random position is broken, and each molecule is fragmented

into two complementary ions, typically an N-terminal ion called b-ion and a C-terminal ion

called y-ion.

Figure 1 shows the fragmentation of a doubly charged peptide sequence of n amino acids

(NHHCHR1CO� � � � � NHCHRiCO� � � � � NHCHRnCOOH). The ith peptide bond is broken and the

peptide is fragmented into an N-terminal ion which corresponds to a charged pre�x subsequence

(NHHCHR1CO� � � � � NHCHRiCO
+), and a C-terminal ion which corresponds to a charged suÆx

subsequence (NHHCHRi+1CO� � � � � NHCHR
+
n
COOH). These two ions are complementary because

joining them determines the original peptide sequence. This dissociation process fragments a

large number of molecules of the same peptide sequence, and ideally, the resulting ions contain

all possible pre�x subsequences and suÆx subsequences. Table 1 shows all the resulting b-ions

and y-ions from the dissociation of a peptide (R1 � R2 � R3). These ions display a spectrum

in the mass spectrometer, and each appears at the position of its mass because it carries a

+1 charge. All the pre�x (or suÆx) subsequences form a sequence ladder where two adjacent

sequences di�er by one amino acid, and indeed, in the tandem mass spectrum, the mass

di�erence between two adjacent b-ions (or y-ions) equals the mass of that amino acid. Figure

2 shows a hypothetical tandem mass spectrum of all the ions (including the parent ions) of a

peptide SWR, and the ladders formed by the b-ions and the y-ions.

We de�ne an ideal tandem mass spectrum to be noise-free and contain only b- and y-ions,

and every mass peak has the same height (or abundance). The interpretation of an ideal

spectrum only deals with the following two factors: (1) it is unknown whether a mass peak

(of some ion) corresponds to a pre�x or a suÆx subsequence; (2) some ions may be lost in

the experiments and the corresponding mass peaks disappear in the spectrum. The ideal de

novo peptide sequencing problem takes an input of a subset of pre�x and suÆx masses of an

unknown target peptide sequence P and asks for a peptide sequence Q such that a subset of

its pre�xes and suÆxes gives the same input masses. Note that as expected, Q may or may

not be the same as P , depending on the input data and the quality.

In practice, noise and other factors can a�ect a tandem mass spectrum. An ion may display

two or three di�erent mass peaks because of the distribution of two isotopic carbons, C12 and

C
13, in the molecules. An ion may lose a water or an ammonia molecule and displays a di�erent

mass peak from its normal one. The fragmentation may result in some other ion types such

as a- and z-ions. Every mass peak displays a height that is proportional to the number of

molecules of such an ion type. Therefore, the de novo peptide sequencing problem is that given

a de�ned correlation function, asks to �nd a peptide sequence whose hypothetical pre�x and
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suÆx masses are optimally correlated to a tandem mass spectrum.

A special case of the peptide sequencing problem is the amino acid modi�cation. An amino

acid at an unknown location on the target peptide sequence is modi�ed and its mass is changed.

This modi�cation appears in every molecule of this peptide, and all the ions containing the

modi�ed amino acid display di�erent mass peaks from the unmodi�ed ions. Finding this

modi�ed amino acid is of great interest in biology because modi�cations are usually associated

with protein functions.

Several computer programs such as SEQUEST (Eng et al., 1994), Mascot (Perkins et al.,

1999), and ProteinProspector(Clauser et al., 1999), have been designed to interpret the tandem

mass spectral data. A typical program like SEQUEST correlates peptide sequences in a protein

database with the tandem mass spectrum. Peptide sequences in a database of over 300,000

proteins are converted into hypothetical tandem mass spectra, which are matched against the

target spectrum using some correlation functions. The sequences with top correlation scores

are reported. This approach gives an accurate identi�cation, but cannot handle the peptides

that are not in the database. Pruning techniques have been applied in some program to screen

the peptides before matching the database but at the cost of reduced accuracy.

An alternative approach (Dancik et al., 1999 and Taylor and Johnson, 1997) is de novo

peptide sequencing. Some candidate peptide sequences are extracted from the spectral data

before they are validated in the database. First, the spectral data is transformed to a directed

acyclic graph, called a spectrum graph, where (1) a node corresponds to a mass peak and an

edge, labeled by some amino acids, connects two nodes that di�er by the total mass of the

amino acids in the label; (2) a mass peak is transformed into several nodes in the graph, and

each node represents a possible pre�x subsequence (ion) for the peak. Then, an algorithm is

called to �nd the highest-scoring path in the graph or all paths with scores higher than some

threshold. The concatenation of edge labels in a path gives one or multiple candidate peptide

sequences. However, the well-known algorithms (Cormen et al., 1990) for �nding the longest

path tend to include multiple nodes associated with the same mass peak. This interprets a

mass peak with multiple ions of a peptide sequence, which is rare in practice. This paper

provides eÆcient sequencing algorithms for a general interpretation of the data by restricting

a path to contain at most one node for each mass peak.

For this purpose, we introduce the notion of an NC-spectrum graph G = (V;E) for a given

tandem mass spectrum, where V = 2k+2 and k is the number of mass peaks in the spectrum.

In conjunction with this graph, we develop a dynamic programming approach to obtain the

following results for previously open problems:

� The de novo peptide sequencing problem can be solved in O(jV jjEj) time and O(jV j2)

space, and in O(jV j+ jEj) time and O(jV j) space if the given spectrum is ideal.

� A modi�ed amino acid can be found in O(jV jjEj) time.

Our paper is organized as follows. Section 2 formally de�nes the NC-spectrum graph and

the peptide sequencing problem. Section 3 describes the dynamic programming algorithms for

the peptide sequencing problem for three kinds of spectra: ideal spectra, noisy spectra and

spectra with a modi�ed amino acid. Section 4 reports the implementation and testing of our

algorithms on experimental data. Section 5 mentions further research.
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2 Spectrum graphs and the peptide sequencing problem

An amino acid unit in a peptide is called a residue. In forming the peptide bonds, an ionized

amino acid molecule loses an Oxygen and two Hydrogens, so the mass of a residue is approx-

imately 18 Daltons less than the mass of an ionized amino acid molecule. The structures of

both molecules are shown in Figure 3. In this paper, we use the amino acid mass referring to

the residue mass.

Given the mass W of a target peptide sequence P , k ions I1; : : : ; Ik of P , and the masses

w1; : : : ; wk of these ions, we create an NC-spectrum graph G = (V;E) as follows.

For each Ij, it is unknown whether it is an N-terminal ion or a C-terminal ion. If Ij is a C-

terminal ion, it has a complementary N-terminal ion, denoted as Icj , with a mass ofW�(wj�2),

where the 2-Dalton mass is from the two extra Hydrogens of the y-ion shown in Figure 1.

Therefore, we create a pair of nodes Nj and Cj to represent Ij and I
c
j , one of which must be

an N-terminal ion. We also create two auxiliary nodes N0 and C0 to represent the zero mass

and the total mass of all amino acids of P respectively. Let V = fN0; N1; :::; Nk ; C0; C1; :::; Ckg.

Each node x 2 V , is placed at a real line, and its coordinate cord(x) is the total mass of its

amino acids, i.e.,

cord(x) =

8>>><
>>>:

0 x = N0;

W � 18 x = C0;

wj � 1 x = Nj for j = 1; : : : ; k;

W � wj + 1 x = Cj for j = 1; : : : ; k:

This coordinate scheme is adopted for the following reasons. An N-terminal b-ion has an extra

Hydrogen (approximately 1 Dalton), so cord(Nj) = wj�1 and cord(Cj) = (W�(wj�2))�1 =

W �wj+1; and the full peptide sequence of P has two extra Hydrogens and one extra Oxygen

(approximately 16 Daltons), so cord(C0) = W � 18. If cord(Ni) = cord(Cj) for some i and

j, Ii and Ij are complementary: one of them corresponds to a pre�x sequence and another

corresponds to the complementary suÆx sequence. In the spectrum graph, they are merged

into one pair of nodes. We say that Nj and Cj are derived from Ij . For convenience, for x and

y 2 V , if cord(x) < cord(y), then we say x < y.

The edges of G are speci�ed as follows. For x and y 2 V , there is a directed edge from

x to y, denoted by (x; y) and E(x; y) = 1, if the following conditions are satis�ed: (1) x and

y are not derived from the same Ij; (2) x < y; and (3) cord(y) � cord(x) equals the total

mass of some amino acids. Figure 4 shows a tandem mass spectrum and its corresponding

NC-spectrum graph. In Figure 4, the path N0�C2�N1�C0 that contains exactly one of every

pair of complementary nodes derived from the same ion corresponds to the original peptide

sequence SWR.

Since G is a directed graph along a line and all edges point to the right on the real line, we

list the nodes from left to right according to their coordinates as x0; x1; : : : ; xk; yk; : : : ; y1; y0,

where xi and yi, 1 � i � k, are complementary. In practice, a tandem mass spectrum may

contain noise such as mass peaks of other types of ions from the same peptide, mass peaks

of ions from other peptides, and mass peaks of unknown ions. A general way to deal with

these situations is to use a pre-de�ned edge (and node) scoring function s(�) such that nodes

corresponding to high peaks and edges labeled with single amino acid receive higher scores.

We de�ne the score of a path to be the sum of the scores of the edges (and the nodes) on the

path. Therefore,
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De�nition 1 The peptide sequencing problem is that given an NC-spectrum graph G = (V;E)

and an edge scoring function s(�), asks for a maximum score path from x0 to y0, such that at

most one of xj and yj for every 1 � j � k is on the path.

If the peptide sequence is known, we can identify the nodes of G corresponding to the pre�x

subsequences of this peptide. These nodes form a directed path from x0 to y0. Generally the

mass of a pre�x subsequence does not equal the mass of any suÆx subsequence, so the path

contains at most one of xj and yj for each j > 0. On the other hand, a satisfying directed path

from x0 to y0 contains observed pre�x subsequences. If each edge on the path is labeled with

some amino acids, we can visit the edges on the path from left to right, and concatenate these

amino acids to form one or multiple peptide sequences that display the tandem mass spectrum.

If an appropriate scoring function is given, �nding the maximum score path is equivalent to

�nding a peptide sequence that is optimally correlated to the spectrum.

Even if the mass of a pre�x subsequence coincidently equals the mass of a suÆx subse-

quence, which means the directed path contains both xj and yj, we can remove either xj or

yj from the path and form a new path corresponding to multiple peptide sequences which

contain the real sequence. We call such a directed path a feasible reconstruction of P or a

feasible solution of G.

To construct the edges of G, we use a mass array A, which takes an input of mass m,

and returns 1 if m equals the total mass of some amino acids; and 0 otherwise. Let h be the

maximum mass under construction. Let Æ be the measurement precision for mass. Then,

Theorem 1 Assume that we are given the maximum mass h and the mass precision Æ.

1. The mass array A can be constructed in O(h
Æ
) time.

2. Given a spectrum of k mass peaks, G can be constructed in O(k2) time.

Proof. These statements are proved as follows.

Statement 1. Given a mass m, 0 < m � h, A[m] = 1 if and only if m equals one amino

acid mass, or there exists an amino acid mass r < m such that A[m�r] = 1. If A is computed

in the order from A[0] to A[h
Æ
], each entry can be determined in constant time since there

are only 20 amino acids and all the previous entries have been determined. The total time is

O(h
Æ
).

Statement 2. For any two nodes vi and vj ofG, we create an edge for vi and vj, E(vi; vj) = 1,

if and only if 0 < cord(vj) � cord(vi) < h and A[cord(vj) � cord(vi)] = 1. There are totally

O(k2) pairs of nodes. With A, G can be constructed in O(k2) time.

In current practice, Æ = 0:2 Dalton, and h = 400 Daltons, roughly the total mass of four

amino acids. The eÆciency of our algorithm will allow biologists to consider much larger h

and much smaller Æ.

3 Algorithms for peptide sequencing

An ideal tandem mass spectrum is noise-free and contains only b- and y-ions, and every mass

peak has the same height. This section starts with algorithms for ideal spectra in Section 3.1

and Section 3.2, and then describes algorithms for noisy spectra in Section 3.3 and spectra

with a modi�ed amino acid in Section 3.4.
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3.1 Algorithm for ideal peptide sequencing

Given an ideal spectrum, we want to �nd a peptide sequence such that every mass peak of the

spectrum matches with some b- or y-ion of the peptide. Therefore,

De�nition 2 The ideal peptide sequencing problem is equivalent to the problem which, given

G = (V;E), asks for a directed path from x0 to y0 which contains exactly one of xj and yj for

each j > 0.

We list the nodes of G from left to right as x0; x1; : : : ; xk; yk; : : : ; y1; y0. Let M(i; j) be a

two-dimension matrix with 0 � i; j � k. Let M(i; j) = 1 if and only if in G, there is a path L

from x0 to xi and a path R from yj to y0, such that L [ R contains exactly one of xp and yp

for every p 2 [1; i] [ [1; j]. Denote the two paths L [ R as the LR paths for M(i; j) = 1. Let

M(i; j) = 0 otherwise. Table 2 shows the matrix M for the NC-spectrum graph in Figure 4.

Algorithm Compute-M(G)

1. Initialize M(0; 0) = 1 and M(i; j) = 0 for all i 6= 0 or j 6= 0;

2. Compute M(1; 0) and M(0; 1);

3. For j = 2 to k

4. For i = 0 to j � 2

(a) if M(i; j � 1) = 1 and E(xi; xj) = 1, then M(j; j � 1) = 1;

(b) if M(i; j � 1) = 1 and E(yj; yj�1) = 1, then M(i; j) = 1;

(c) if M(j � 1; i) = 1 and E(xj�1; xj) = 1, then M(j; i) = 1;

(d) if M(j � 1; i) = 1 and E(yj; yi) = 1, then M(j � 1; j) = 1.

Theorem 2 The following statements hold.

1. Given G = (V;E), Algorithm Compute-M computes the matrix M in O(jV j2) time.

2. Given G = (V;E) and M , a feasible solution of G can be found in O(jV j) time.

3. Given G = (V;E), a feasible solution of G can be found in O(jV j2) time and O(jV j2)

space.

4. Given G = (V;E), all feasible solutions of G can be found in O(jV j2 + njV j) time and

O(jV j2 + njV j) space, where n is the number of solutions.

Proof. These statements are proved as follows.

Statement 1. Without loss of generality, assume that i < j and M(i; j) = 1. By de�nition,

either xj�1 or yj�1 (but not both) must be on the LR paths for M(i; j) = 1, and there exists

a node yp such that E(yj ; yp) = 1 and M(i; p) = 1. Thus either i = j � 1 or p = j � 1,

corresponding to Steps 4(b) and 4(d) respectively in the algorithm. A similar analysis holds

for M(j; i) = 1 and i < j in Steps 4(a) and 4(c). Therefore, every entry in M is correctly

computed in the algorithm. Note that jV j = 2k + 2 and Steps 4(a), 4(b), 4(c), and 4(d) take

O(1) time, and thus the total time is O(jV j2).

Statement 2. Note that jV j = 2k + 2. Without loss of generality, assume that a feasible

solution S contains node xk. Then there exists some j < k, such that edge (xk; yj) 2 S and

M(k; j) = 1. Therefore, we search the non-zero entries in the last row of M and �nd a j that

satis�es both M(k; j) = 1 and E(xk; yj) = 1. This takes O(jV j) time. With M(k; j) = 1,
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we backtrack M to search the next edge of S as follows. If j = k � 1, the search starts from

i = k � 2 to 0 until both E(xi; xk) = 1 and M(i; j) = 1 are satis�ed; otherwise j < k � 1,

and then E(xk�1; xk) = 1 and M(k � 1; j) = 1. We repeat this process to �nd every edge of

S. Similar process holds for feasible solutions that contain node yk. Using a common data

structure such as link lists or a two-dimension matrix, this algorithm visits every node of G

at most once in the order from xk to x0 and from yk to y0 at a total cost of O(jV j) time.

Statement 3. We compute M by means of Statement 1 and �nd a feasible solution by

means of Statement 2. The total cost is O(jV j2) time and O(jV j2) space.

Statement 4. The proof is similar to that of Statement 2. For feasible solutions that

contain node xk, we search every j that satis�es bothM(k; j) = 1 and E(xk; yj) = 1, and each

j corresponds to di�erent feasible solutions. For every M(k; j) = 1, we backtrack M to search

the next edges as follows. If j = k�1, the search starts from i = k � 2 to 0 to �nd every i that

satis�es both E(xi; xk) = 1 andM(i; j) = 1; otherwise j < k�1, and then E(xk�1; xk) = 1 and

M(k � 1; j) = 1. Every edge found in this process corresponds to di�erent feasible solutions.

We repeat this process to �nd all feasible solutions that contain node xk. Similar process holds

for feasible solutions that contain node yk. Finding one feasible solution costs O(jV j) time

and O(jV j) space because the algorithm visits every node of G at most once for each solution.

Computing M and �nding n solutions cost O(jV j2 + njV j) time and O(jV j2 + njV j) space in

total.

3.2 An improved algorithm for ideal peptide sequencing

To improve the time and space complexities in Theorem 2, we encodeM into two linear arrays.

De�ne an edge (xi; yj) with 0 � i; j � k to be a cross edge, and an edge (xi; xj) or (yj; yi) with

0 � i < j � k to be an inside edge. Let lce(z) be the length of the longest consecutive inside

edges starting from node z; i.e.,(
lce(xi) = j � i if E(xi; xi+1) = : : : = E(xj�1; xj) = 1 and (j = k or E(xj ; xj+1) = 0);

lce(yj) = j � i if E(yj ; yj�1) = : : : = E(yi+1; yi) = 1 and (i = 0 or E(yi; yi�1) = 0):

Let dia(z) be two diagonals in M , where8><
>:

dia(xj) =M(j; j � 1) for 0 < j � k;

dia(yj) =M(j � 1; j) for 0 < j � k;

dia(x0) = dia(y0) = 1:

Lemma 3 Given lce(�) and dia(�), any entry of M can be computed in O(1) time..

Proof. Without loss of generality, let the M(i; j) be the entry we want to compute where

0 � i < j � k. If i = j � 1, M(i; j) = dia(yj) as de�ned; otherwise i < j � 1 and M(i; j) = 1

if and only if M(i; i+1) = 1 and E(yj; yj�1) = : : : = E(yi+2; yi+1) = 1, which is equivalent to

dia(yi+1) = 1 and lce(yj) � j � i� 1. Thus both cases can be solved in O(1) time.

Lemma 4 Given G = (V;E), lce(�) and dia(�) can be computed in O(jV j+ jEj) time.

Proof. We retrieve consecutive edges starting from yk, yk�1, : : :, until the �rst yp with

p � k and E(yp; yp�1) = 0. Then we can �ll lce(yk) = k � p, lce(yk�1) = k � p � 1, : : :, and

lce(yp) = 0 immediately. Next, we start a new retrieving and �lling process from yp�1, and
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repeat this until y0 is visited. Eventually we retrieve O(k) consecutive edges. A similar process

can be applied to x. Using a common graph data structure such link lists, a consecutive edge

can be retrieved in constant time, and thus lce(�) can be computed in O(jV j) time.

By de�nition, dia(xj) = M(j; j � 1) = 1 if and only if there exists some i with 0 � i <

j � 1, M(i; j � 1) = 1 and E(xi; xj) = 1. If we have computed dia(x0); : : : ;dia(xj�1) and

dia(yj�1); : : : ;dia(y0), then M(i; j � 1) can be computed in constant time by means of the

proof in Lemma 3. To �nd the xi for E(xi; xj) = 1, we can visit every inside edge that ends

at xj. Thus dia(xj) can be computed and so can dia(yj). Therefore the computation of dia(�)

visits every inside edge exactly once, and the total time is O(jV j+ jEj).

Theorem 5 Assume that G = (V;E) is given.

1. A feasible solution of G can be found in O(jV j+ jEj) time and O(jV j) space.

2. All feasible solutions of G can be found in O(njV j+ jEj) time and O(njV j) space, where

n is the number of solutions.

Proof. These statements are proved as follows.

Statement 1. By Lemma 4, lce(�) and dia(�) can be computed in O(jV j + jEj) time and

O(jV j) space. By Lemma 3, the last row and the last column of M can be reconstructed from

lce(�) and dia(�) in O(jV j) time. By Theorem 2 and Lemma 3, a feasible solution of G can

be found in O(jEj) time. Therefore, �nding a feasible solution takes O(jV j + jEj) time and

O(jV j) space.

Statement 2. The proof is similar to the proof of Statement 4 in Theorem 2. Finding an

additional feasible solution takes O(jV j) time and O(jV j) space. Thus �nding n solutions takes

O(njV j+ jEj) time and O(njV j) space.

A feasible solution of G is a path of k+1 nodes and k edges, and therefore there must exist

an edge between any two nodes on the path by the edge transitive relation. This implies that

there are at least (k + 1)k=2 or O(jV j2) edges in the graph. However, in practice, a threshold

is usually set for the maximum length (mass) of an edge, so the number of edges in G could

be much smaller than O(jV j2) and may actually equal O(jV j) sometimes. Thus Theorem 5

actually �nds a feasible solution in linear time for a sparse graph G.

3.3 Algorithm for peptide sequencing

In practice, a tandem mass spectrum contains noise and other types of ions. This section

describes an algorithm for the peptide sequencing problem (De�nition 1). We �rst compute

an NC-spectrum graph G from this spectrum. Let s(�) be the edge scoring function for G. Let

Q(i; j) be a two-dimension matrix with 0 � i; j � k. Q(i; j) > 0 if and only if in G, there is a

path L from x0 to xi and a path R from yj to y0, such that at most one of xp and yp is in L[R

for every p 2 [1; i][ [1; j]; Q(i; j) = 0 otherwise. If Q(i; j) > 0, Q(i; j) = maxL;Rfs(L)+ s(R)g,

the maximum score among all L and R pairs. Table 4 shows the matrix Q for the NC-spectrum

graph in Figure 4 using a scoring function s(e) = 1 for every edge e 2 G.

Algorithm Compute-Q(G)

1. Initialize Q(i; j) = 0 for all 0 � i; j � k;

2. For j = 1 to k

3. If E(yj ; y0) = 1, then Q(0; j) = maxfQ(0; j); s(yj ; y0)g;
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4. If E(x0; xj) = 1, then Q(j; 0) = maxfQ(j; 0); s(x0; xj)g;

5. For i = 1 to j � 1

(a) For every E(yj ; yp) = 1 and Q(i; p) > 0, Q(i; j) = maxfQ(i; j); Q(i; p) + s(yj; yp)g;

(b) For every E(xp; xj) = 1 and Q(p; i) > 0, Q(j; i) = maxfQ(j; i); Q(p; i) + s(xp; xj)g.

Theorem 6 The following statements hold.

1. Given G = (V;E), Algorithm Compute-Q computes the matrix Q in O(jV jjEj) time.

2. Given G = (V;E), a feasible solution of G can be found in O(jV jjEj) time and O(jV j2)

space.

Proof. These statements are proved as follows.

Statement 1. Let L and R be the maximum score paths that correspond to Q(i; j) > 0

for i < j. By de�nition, after removing node yj from R, L [ R � fyjg contains at most one

of xq and yq for all 1 � q � j � 1. Let (yj; yp) 2 R such that Q(i; j) = Q(i; p) + s(yj; yp)

corresponding to Steps 3 and 5(a) in the algorithm. A similar analysis holds for Q(j; i) = 1 and

i < j in Steps 4 and 5(b). The loop at Step 2 uses the previously computed maximum scores

Q(0; j�1); : : : ; Q(j�1; j�1) and Q(j�1; 0); : : : ; Q(j�1; j�1) to �ll up the maximum scores

in Q(0; j); : : : ; Q(j; j) and Q(j; 0); : : : ; Q(j; j). Thus every entry in Q is correctly computed in

a correct order. For every j, Steps 5(a) and 5(b) visit every edge of G at most once, so the

total time is O(jV jjEj).

Statement 2. Algorithm Compute-Q computes Q in O(jV jjEj) time and O(jV j2) space.

For every i and j, if Q(i; j) > 0 and E(xi; yj) = 1, we compute the sum Q(i; j)+ s(xi; yj). Let

Q(p; q) + s(xp; yq) be the maximum value, and we can backtrack Q(p; q) to �nd all the edges

of the feasible solution. The total cost is O(jV jjEj) time and O(jV j2) space.

3.4 Algorithm for one-amino acid modi�cation

Amino acid modi�cations are related to protein functions. There are a few hundred known

modi�cations. For example, some proteins are active when some amino acid is phosphorylated

but inactive when it is dephosphorylated. In most experiments, a protein is digested into

multiple peptides, and most peptides have at most one modi�ed amino acid. This section

discusses how to �nd one modi�ed amino acid from a tandem mass spectrum. For the simplicity

of our explanation, we assume that a given tandem mass spectrum is ideal. The methodology

works for a noisy spectrum too.

We make two assumptions about the modi�cation: (1) the modi�ed mass is unknown

and is not equal to the total mass of any number of amino acids; otherwise, it is information-

theoretically impossible to detect an amino acid modi�cation from tandem mass spectral data;

(2) there is no feasible reconstruction for the given spectral data because a modi�cation is rare

if there is a feasible solution.

De�nition 3 The one-amino acid modi�cation problem is equivalent to the problem which,

given G = (V;E), asks for two nodes vi and vj, such that E(vi; vj) = 0 but adding the edge

(vi; vj) to G creates a feasible solution that contains this edge.

Suppose the peptide sequence and the position of the modi�cation are given. The modi�ed

mass can be determined by the di�erence between the experimentally measured peptide mass
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and the un-modi�ed mass. Thus, in the NC-spectrum graph G, we can identify the nodes

corresponding to the pre�x subsequences, among which there are only one pair of adjacent

nodes vi and vj, such that E(vi; vj) = 0 and node vj contains the modi�ed amino acid. By

adding the edge (vi; vj) to G, these nodes form a directed path from x0 to y0. This path is a

feasible solution.

On the contrary, suppose adding an edge (vi; vj) to G creates a feasible solution that

contains this edge. Edge (vi; vj) is labeled by � indicating a modi�ed amino acid. If each edge

on the path corresponds to one amino acid, we can visit the edges on the path from left to

right, and concatenate these amino acids to form a peptide sequence that display the tandem

mass spectrum. If some edge corresponds to multiple amino acids, we obtain more than one

peptide sequences. With additional information such as a protein database or a modi�cation

database, we can predict the original amino acid(s) for �.

LetG = (V;E) be an NC-spectrum graph with nodes from left to right as x0; : : : ; xk; yk; : : : ; y0.

Let N(i; j) be a two-dimension matrix with 0 � i; j � k, where N(i; j) = 1 if and only if there

is a path from xi to yj which contains exactly one of xp and yp for every p 2 [i; k] [ [j; k]. Let

N(i; j) = 0 otherwise. Table 3 shows the matrix N for the NC-spectrum graph in Figure 4.

Algorithm Compute-N(G)

1. Initialize N(i; j) = 0 for all i and j;

2. Compute N(k; k � 1) and N(k � 1; k);

3. For j = k � 2 to 0

4. For i = k to j + 2

(a) if N(i; j + 1) = 1 and E(xj ; xi) = 1, then N(j; j + 1) = 1;

(b) if N(i; j + 1) = 1 and E(yj+1; yj) = 1, then N(i; j) = 1;

(c) if N(j + 1; i) = 1 and E(xj ; xj+1) = 1, then N(j; i) = 1;

(d) if N(j + 1; i) = 1 and E(yi; yj+1) = 1, then N(j + 1; j) = 1.

Theorem 7 The following statements hold.

1. Given G = (V;E), Algorithm Compute-N computes the matrix N in O(jV j2) time.

2. Given G = (V;E), all possible amino acid modi�cations can be found in O(jV jjEj) time

and O(jV j2) space.

Proof. These statements are proved as follows.

Statement 1. Let L and R be the paths that correspond to N(i; j) = 1 and i > j. By

de�nition, after removing node yj from R, L [R� fyjg contains exactly one of xq and yq for

all j + 1 � q � k. Let (yp; yj) 2 R, then N(i; p) = 1. Therefore, either i = j + 1 or p = j + 1,

corresponding to Step 4(d) or 4(b) respectively in the algorithm. A similar analysis holds for

N(j; i) = 1 and i > j in Steps 4(a) and 4(c), and thus every entry in N is correctly computed

in the algorithm. The loop at Step 3 uses previously computed N(k; j+1); : : : ; N(j+1; j+1)

and N(j+1; k); : : : ;M(j+1; j+1) to �ll up N(k; j); : : : ; N(j; j) and N(j; k); : : : ; N(j; j). Thus

the algorithm computes N in a correct order. Note that jV j = 2k + 2 and Steps 4(a), 4(b),

4(c), and 4(d) take O(1) time, and thus the total time is O(jV j2).

Statement 2. Let M and N be two matrices for G computed from Algorithm Compute-M

and Algorithm Compute-N respectively at a total cost of O(jV j2) time and O(jV j2) space.

Without loss of generality, let the modi�cation be between two pre�x nodes xi and xj with
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0 � i < j � k and E(xi; xj) = 0. All the pre�x nodes to the right of xj have the same mass

o�set from the normal locations because the corresponding sequences contain the modi�ed

amino acid. By adding a new edge (xi; xj) to G, we create a feasible solution S that contains

this edge: (1) If i+1 < j, then yi+1 2 S, and thusM(i; i+1) = 1 and N(j; i+1) = 1. Finding

all such xi and xj pairs takes O(jV j
2) time because there are O(k2) possible combinations of

i and j. (2) If 1 < i + 1 = j < k, then there exists an edge (yq; yp) 2 S and q > j > i > p,

such that E(yq; yp) = 1 and M(i; p) = 1 and N(j; q) = 1. There are at most O(jEj) edges

that satisfy E(yq; yp) = 1, and checking O(jV j) possible i+ 1 = j costs O(jV jjEj) time. (3) If

0 = i = j � 1, then there exists an edge (yq; y0) 2 S and q > j > i, such that E(yq; y0) = 1

and N(1; q) = 1, which can be examined in O(jV j) time. (4) If i+1 = j = k, then there exists

an edge (xk; yp) 2 S and j > i > p, such that E(xk; yp) = 1 and M(k � 1; p) = 1, which can

be examined in O(jV j) time. The case that the modi�cation is between two pre�x nodes xk
and yj can be examined for E(xk; yj) = 0 and M(k; j) = 1 in O(jV j) time. Thus the total

complexity is O(jV jjEj) time and O(jV j2) space.

Note that the condition in Theorem 7 does not require that all ions in the spectrum are

observed. If some ions are lost but their complementary ions appear, G still contains all pre�x

and suÆx nodes of the target sequence. Furthermore, if G does not contain all pre�x and suÆx

nodes because of many missing ions, this algorithm still �nds the position of the modi�cation

but the result is a�ected by the quality of the data.

4 Experimental results

We have presented algorithms for reconstructing peptide sequences from tandem mass spectral

data with noise and loss of ions. This section reports experimental studies which focus on cases

of b-ions losing a water or ammonia molecule and cases of isotopic varieties for an ion. We treat

the rare occurrence such as y-ions losing a water or ammonia molecule, b-ions losing two water

or ammonia molecules, and other types of ions, as noise and apply Algorithm Compute-Q to

reconstruct peptide sequences.

Isotopic ions come from isotopic carbons of C12 and C
13. An ion usually has a couple of iso-

topic forms, and the mass di�erence between two isotopic ions is generally one or two Daltons.

Their abundance reects the binomial distribution between C
12 and C

13. This distribution can

be used for identi�cation. Isotopic ions can be merged to one ion of either the highest intensity

or a new mass.

It is very common for a b-ion to lose a water or ammonia molecule. In the construction of

an NC-spectrum graph, we add two types of edges when (1) the distance between two nodes

equals the total mass of some amino acids plus the mass of one water molecule, and (2) the

distance between two nodes equals the total mass of some amino acids minus the mass of one

water molecule. The �rst type includes the case that the distance equals the mass of exactly

one water molecule. Therefore, a feasible path may contain edges of these two types, but the

number of the �rst type edges should equal the number of the second type edges, so the net

number of water molecules on the path equals zero. The scoring function for each edge is based

on the abundance of two nodes and the error from a standard mass of some amino acids. We

have implemented Algorithm Compute-Q and tested it on the data generated by the following

process:

The Chicken Ovalbumin proteins were digested with trypsin in 100 mM ammonium
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bicarbonate bu�er pH 8 for 18 hours at 37ÆC. Then 100 �` are injected in acetoni-

trile into a reverse phase HPLC interfaced with a Finnigan LCQ ESI-MS/MS mass

spectrometer. A 1% to 50% acetonitrile 0.1%TFA linear gradient was executed

over 60 minutes.

Figure 5 shows one of our prediction results. The ions labeled in the spectrum were

identi�ed successfully. We use a resolution of 1.0 Dalton and a relative abundance threshold

of 5.0 in our program.

5 Further research

We are working on a generalized scoring function which gives the best prediction, and the

cases of multiple peptides.
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7 Tables

B-ion Sequences

b1 (R1)
+

b2 (R1 � R2)
+

Y-ion Sequences

y2 (R2 � R3)
+

y1 (R3)
+

Table 1: Ionization and fragmentation of peptide (R1 � R2 � R3).

M 0 1 2

0 1 0 0

1 1 0 1

2 1 0 0

Table 2: Matrix M for the NC-spectrum graph in Figure 4.

N 2 1 0

2 0 1 0

1 1 0 1

0 1 1 0

Table 3: Matrix N for the NC-spectrum graph in Figure 4.
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Q 0 1 2

0 0 0 0

1 1 0 2

2 2 0 0

Table 4: Matrix Q for the NC-spectrum graph in Figure 4.
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Figure 1: A doubly charged peptide molecule is fragmented into a b-ion and a y-ion.
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