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The Escherichia coli MG1655 genome has been completely se-
quenced. The annotated sequence, biochemical information, and
other information were used to reconstruct the E. coli metabolic
map. The stoichiometric coefficients for each metabolic enzyme in
the E. coli metabolic map were assembled to construct a genome-
specific stoichiometric matrix. The E. coli stoichiometric matrix was
used to define the system’s characteristics and the capabilities of
E. coli metabolism. The effects of gene deletions in the central
metabolic pathways on the ability of the in silico metabolic net-
work to support growth were assessed, and the in silico predictions
were compared with experimental observations. It was shown that
based on stoichiometric and capacity constraints the in silico
analysis was able to qualitatively predict the growth potential of
mutant strains in 86% of the cases examined. Herein, it is demon-
strated that the synthesis of in silico metabolic genotypes based on
genomic, biochemical, and strain-specific information is possible,
and that systems analysis methods are available to analyze and
interpret the metabolic phenotype.

bioinformatics u metabolism u genotype-phenotype relation u flux balance
analysis

The complete genome sequence for a number of microor-
ganisms has been established (The Institute for Genomic

Research at www.tigr.org). The genome sequencing efforts and
the subsequent bioinformatic analyses have defined the mo-
lecular ‘‘parts catalogue’’ for a number of living organisms.
However, it is evident that cellular functions are multigeneic
in nature, thus one must go beyond a molecular parts catalogue
to elucidate integrated cellular functions based on the molec-
ular cellular components (1). Therefore, to analyze the prop-
erties and the behavior of complex cellular networks, one
needs to use methods that focus on the systemic properties of
the network. Approaches to analyze, interpret, and ultimately
predict cellular behavior based on genomic and biochemical
data likely will involve bioinformatics and computational
biology and form the basis for subsequent bioengineering
analysis.

In moving toward the goal of developing an integrated de-
scription of cellular processes, it should be recognized that there
exists a history of studying the systemic properties of metabolic
networks (2) and many mathematical methods have been de-
veloped to carry out such studies. These methods include
approaches such as metabolic control analysis (3, 4), f lux balance
analysis (FBA) (5–7), metabolic pathway analysis (8–11, 69),
cybernetic modeling (12), biochemical systems theory (13),
temporal decomposition (14), and so on. Although many math-
ematical methods and approaches have been developed, there
are few comprehensive metabolic systems for which detailed
kinetic information is available and where such detailed analysis
can be carried out (see refs. 15–17 for a few noteworthy
exceptions).

To analyze, interpret, and predict cellular behavior, each
individual step in a biochemical network must be described,
normally with a rate equation that requires a number of kinetic

constants. Unfortunately, it currently is not possible to for-
mulate this level of description of cellular processes on a
genome scale. The kinetic parameters cannot be estimated
from the genome sequence and these parameters are not
available in the literature. In the absence of kinetic informa-
tion, it is, however, still possible to assess the theoretical
capabilities of one integrated cellular process, namely metab-
olism, and examine the feasible metabolic f lux distributions
under a steady-state assumption. The steady-state analysis is
based on the constraints imposed on the metabolic network by
the stoichiometry of the metabolic reactions, which basically
represent mass balance constraints. The steady-state analysis
of metabolic networks based on the mass balance constraints
is known as FBA (7, 18, 19). This analysis differs from detailed
kinetic modeling of cellular processes, in that it does not
attempt to predict the exact behavior of metabolic networks.
Rather it uses known constraints on the integrated function of
multiple enzymes to separate the states that a system can reach
from those that it cannot. Then within the domain of allowable
behavior one can study the genotype-phenotype relation, such
as the stoichiometric optimal growth performance in a defined
environment.

In this manuscript, we have used the biochemical literature,
the annotated genome sequence data, and strain-specific infor-
mation, to formulate an organism scale in silico representation
of the Escherichia coli MG1655 metabolic capabilities. FBA
then was used to assess metabolic capabilities subject to these
constraints leading to qualitative predictions of growth
performance.

Materials and Methods
Definition of the E. coli MG1655 Metabolic Map. An in silico repre-
sentation of E. coli metabolism has been constructed. We have used
the biochemical literature (20), genomic information (21), and the
metabolic databases (22–24). Because of the long history of E. coli
research, there was biochemical or genetic evidence for every
metabolic reactions included in the in silico representation, and in
most cases, there was both genetic and biochemical evidence (Table
1). The complete list of genes included in the in silico analysis is
shown in Table 1, and the metabolic reactions catalyzed by these
genes can be found on the web (http:yygcrg.ucsd.eduy
downloads.html). The stoichiometric coefficients for each meta-
bolic reaction within this list were used to form the stoichiometric
matrix S.

Determining the Capabilities of the E. coli Metabolic Network. The
theoretical metabolic capabilities of E. coli were assessed by FBA
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(5–7). The metabolic capabilities of the in silico metabolic
genotype were partially defined by mass balance constraints;
mathematically represented by a matrix equation:

Szv 5 0. [1]

The matrix S is the mxn stoichiometric matrix, where m is the
number of metabolites and n is the number of reactions in the
network. The E. coli stoichiometric matrix was 436 3 720. The
vector v represents all f luxes in the metabolic network, including
the internal f luxes, transport f luxes, and the growth flux. The
optimal v vector was determined and defined the steady-state
metabolic f lux distribution.

For the E. coli metabolic network, the number of fluxes was
greater than the number of mass balance constraints; thus, there
was a plurality of feasible flux distributions that satisfied the
mass balance constraints (defined in Eq. 1), and the solutions (or
feasible metabolic f lux distributions) were confined to the
nullspace of the matrix S.

In addition to the mass balance constraints, we imposed
constraints on the magnitude of each individual metabolic f lux.

ai # vi # bi. [2]

The linear inequality constraints were used to enforce the
reversibilityyirreversibility of metabolic reactions and the max-

Table 1. The genes included in the E. coli metabolic genotype (21)

Central metabolism (EMP, PPP,
TCA cycle, electron transport)

aceA, aceB, aceE, aceF, ackA, acnA, acnB, acs, adhE, agp, appB, appC, atpA, atpB, atpC, atpD, atpE, atpF,
atpG, atpH, atpI, cydA, cydB, cydC, cydD, cyoA, cyoB, cyoC, cyoD, dld, eno, fba, fbp, fdhF, fdnG, fdnH,
fdnI, fdoG, fdoH, fdoI, frdA, frdB, frdC, frdD, fumA, fumB, fumC, galM, gapA, gapC_1, gapC_2, glcB,
glgA, glgC, glgP, glk, glpA, glpB, glpC, glpD, gltA, gnd, gpmA, gpmB, hyaA, hyaB, hyaC, hybA, hybC,
hycB, hycE, hycF, hycG, icdA, lctD, ldhA, lpdA, malP, mdh, ndh, nuoA, nuoB, nuoE, nuoF, nuoG, nuoH,
nuoI, nuoJ, nuoK, nuoL, nuoM, nuoN, pckA, pfkA, pfkB, pflA, pflB, pflC, pflD, pgi, pgk, pntA, pntB, ppc,
ppsA, pta, purT, pykA, pykF, rpe, rpiA, rpiB, sdhA, sdhB, sdhC, sdhD, sfcA, sucA, sucB, sucC, sucD, talB,
tktA, tktB, tpiA, trxB, zwf, pgl (30), maeB (30)

Alternative carbon source adhC, adhE, agaY, agaZ, aldA, aldB, aldH, araA, araB, araD, bglX, cpsG, deoB, fruK, fucA, fucI, fucK, fucO,
galE, galK, galT, galU, gatD, gatY, glk, glpK, gntK, gntV, gpsA, lacZ, manA, melA, mtlD, nagA, nagB,
nanA, pfkB, pgi, pgm, rbsK, rhaA, rhaB, rhaD, srlD, treC, xylA, xylB

Amino acid metabolism adi, aldH, alr, ansA, ansB, argA, argB, argC, argD, argE, argF, argG, argH, argI, aroA, aroB, aroC, aroD, aroE,
aroF, aroG, aroH, aroK, aroL, asd, asnA, asnB, aspA, aspC, avtA, cadA, carA, carB, cysC, cysD, cysE, cysH,
cysI, cysJ, cysK, cysM, cysN, dadA, dadX, dapA, dapB, dapD, dapE, dapF, dsdA, gabD, gabT, gadA, gadB,
gdhA, glk, glnA, gltB, gltD, glyA, goaG, hisA, hisB, hisC, hisD, hisF, hisG, hisH, hisI, ilvA, ilvB, ilvC, ilvD,
ilvE, ilvG_1, ilvG_2, ilvH, ilvI, ilvM, ilvN, kbl, ldcC, leuA, leuB, leuC, leuD, lysA, lysC, metA, metB, metC,
metE, metH, metK, metL, pheA, proA, proB, proC, prsA, putA, sdaA, sdaB, serA, serB, serC, speA, speB,
speC, speD, speE, speF, tdcB, tdh, thrA, thrB, thrC, tnaA, trpA, trpB, trpC, trpD, trpE, tynA, tyrA, tyrB,
ygjG, ygjH, alaB (42), dapC (43), pat (44), prr (44), sad (45), methylthioadenosine nucleosidase (46),
5-methylthioribose kinase (46), 5-methylthioribose-l-phosphate isomerase (46), adenosyl homocysteinase
(47), L-cysteine desulfhydrase (44), glutaminase A (44), glutaminase B (44)

Purine & pyrimidine
metabolism

add, adk, amn, apt, cdd, cmk, codA, dcd, deoA, deoD, dgt, dut, gmk, gpt, gsk, guaA, guaB, guaC, hpt,
mutT, ndk, nrdA, nrdB, nrdD, nrdE, nrdF, purA, purB, purC, purD, purE, purF, purH, purK, purL, purM,
purN, purT, pyrB, pyrC, pyrD, pyrE, pyrF, pyrG, pyrH, pyrI, tdk, thyA, tmk, udk, udp, upp, ushA, xapA, yicP,
CMP glycosylase (48)

Vitamin & cofactor metabolism acpS, bioA, bioB, bioD, bioF, coaA, cyoE, cysG, entA, entB, entC, entD, entE, entF, epd, folA, folC, folD, folE,
folK, folP, gcvH, gcvP, gcvT, gltX, glyA, gor, gshA, gshB, hemA, hemB, hemC, hemD, hemE, hemF, hemH,
hemK, hemL, hemM, hemX, hemY, ilvC, lig, lpdA, menA, menB, menC, menD, menE, menF, menG, metF,
mutT, nadA, nadB, nadC, nadE, ntpA, pabA, pabB, pabC, panB, panC, panD, pdxA, pdxB, pdxH, pdxJ,
pdxK, pncB, purU, ribA, ribB, ribD, ribE, ribH, serC, thiC, thiE, thiF, thiG, thiH, thrC, ubiA, ubiB, ubiC, ubiG,
ubiH, ubiX, yaaC, ygiG, nadD (49), nadF (49), nadG (49), panE (50), pncA (49), pncC (49), thiB (51), thiD (51),
thiK (51), thiL (51), thiM (51), thiN (51), ubiE (52), ubiF (52), arabinose-5-phosphate isomerase (22),
phosphopantothenate-cysteine ligase (50), phosphopantothenate-cysteine decarboxylase (50),
phospho-pantetheine adenylyltransferase (50), dephosphoCoA kinase (50), NMN glycohydrolase (49)

Lipid metabolism accA, accB, accD, atoB, cdh, cdsA, cls, dgkA, fabD, fabH, fadB, gpsA, ispA, ispB, pgpB, pgsA, psd, pssA, pgpA
(53)

Cell wall metabolism ddlA, ddlB, galF, galU, glmS, glmU, htrB, kdsA, kdsB, kdtA, lpxA, lpxB, lpxC, lpxD, mraY, msbB, murA, murB,
murC, murD, murE, murF, murG, murI, rfaC, rfaD, rfaF, rfaG, rfaI, rfaJ, rfaL, ushA, glmM (54), lpcA (55),
rfaE (55), tetraacyldisaccharide 4* kinase (55), 3-deoxy-D-manno-octulosonic-acid 8-phosphate
phosphatase (55)

Transport processes araE, araF, araG, araH, argT, aroP, artI, artJ, artM, artP, artQ, brnQ, cadB, chaA, chaB, chaC, cmtA, cmtB,
codB, crr, cycA, cysA, cysP, cysT, cysU, cysW, cysZ, dctA, dcuA, dcuB, dppA, dppB, dppC, dppD, dppF, fadL,
focA, fruA, fruB, fucP, gabP, galP, gatA, gatB, gatC, glnH, glnP, glnQ, glpF, glpT, gltJ, gltK, gltL, gltP, gltS,
gntT, gpt, hisJ, hisM, hisP, hisQ, hpt, kdpA, kdpB, kdpC, kgtP, lacY, lamB, livF, livG, livH, livJ, livK, livM,
lldP, lysP, malE, malF, malG, malK, malX, manX, manY, manZ, melB, mglA, mglB, mglC, mtlA, mtr, nagE,
nanT, nhaA, nhaB, nupC, nupG, oppA, oppB, oppC, oppD, oppF, panF, pheP, pitA, pitB, pnuC, potA, potB,
potC, potD, potE, potF, potG, potH, potI, proP, proV, proW, proX, pstA, pstB, pstC, pstS, ptsA, ptsG, ptsI,
ptsN, ptsP, purB, putP, rbsA, rbsB, rbsC, rbsD, rhaT, sapA, sapB, sapD, sbp, sdaC, srlA_1, srlA_2, srlB, tdcC,
tnaB, treA, treB, trkA, trkG, trkH, tsx, tyrP, ugpA, ugpB, ugpC, ugpE, uraA, xapB, xylE, xylF, xylG, xylH,
fruF (56), gntS (57), metD (43), pnuE (49), scr (56)

The in silico E. coli MG1655 metabolic genotype used herein is available on the web: http://gcrg.ucsd.eduydownloads.html.
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imal metabolic f luxes in the transport reactions. The intersection
of the nullspace and the region defined by the linear inequalities
formally defined a region in flux space that we will refer to as the
feasible set. The feasible set defined the capabilities of the
metabolic network subject to the subset of cellular constraints,
and all feasible metabolic f lux distributions lie within the feasible
set (see Fig. 1). However, every vector v within the feasible set
is not reachable by the cell under a given condition because of
other constraints not considered in the analysis (i.e., maximal
internal f luxes and gene regulation). The feasible set can be
further reduced by imposing additional constraints, and if all of
the necessary details to describe metabolic dynamics are known,
then the feasible set may reduce to a small region or even a single
point (see Fig. 1).

For the analysis presented herein, we defined ai 5 0 for
irreversible internal f luxes, and ai 5 2` for reversible internal
f luxes. The reversibility of the metabolic reactions was deter-
mined from the biochemical literature and is identified for each
reaction on the web site. The transport f lux for inorganic
phosphate, ammonia, carbon dioxide, sulfate, potassium, and
sodium was unrestrained (ai 5 2` and bi 5 `). The transport
f lux for the other metabolites, when available in the in silico
medium, was constrained between zero and the maximal level

(0 , vi , vi
max). However, when the metabolite was not available

in the medium, the transport f lux was constrained to zero. The
transport f lux for metabolites that were capable of leaving the
metabolic network (i.e., acetate, ethanol, lactate, succinate,
formate, pyruvate, etc.) always was unconstrained in the outward
direction.

A particular metabolic f lux distribution within the feasible set
was found by using linear programming (LP). A commercially
available LP package was used (LINDO, Lindo Systems, Chicago).
LP identified a solution that minimized a particular metabolic
objective (subject to the imposed constraints) (5, 25, 26), and was
formulated as shown. Minimize 2Z, where

Z 5 Scizvi 5 ^c·v&. [3]

The vector c was used to select a linear combination of metabolic
f luxes to include in the objective function (27). Herein, c was
defined as the unit vector in the direction of the growth flux,
and the growth flux was defined in terms of the biosynthetic
requirements:

O
all m

dmzXmO¡

vgrowth

Biomass , [4]

where dm is the biomass composition of metabolite Xm (defined
from the literature; ref. 28), and the growth flux is modeled as
a single reaction that converts all of the biosynthetic precursors
into biomass.

Results
FBA was used to examine the change in the metabolic capabil-
ities caused by gene deletions. To simulate a gene deletion, the
flux through the corresponding enzymatic reaction was re-
stricted to zero. Genes that code for isozymes or genes that code
for components of same enzyme complex were simultaneously
removed (i.e., aceEF, sucCD). The optimal value of the objective
(Zmutant) was compared with the ‘‘wild-type’’ objective (Z) to
determine the systemic effect of the gene deletion. The ratio of
optimal growth yields (ZmutantyZ) was calculated (Fig. 2).

Gene Deletions. E. coli MG1655 in silico was subjected to deletion
of each individual gene product in the central metabolic path-
ways [glycolysis, pentose phosphate pathway (PPP), tricarboxylic
acid (TCA) cycle, respiration processes], and the maximal ca-

Fig. 1. The feasible solution set for a hypothetical metabolic reaction
network. (A) The steady-state operation of the metabolic network is restricted
to the region within a cone, defined as the feasible set (8). The feasible set
contains all flux vectors that satisfy the physicochemical constrains (Eqs. 1 and
2). Thus, the feasible set defines the capabilities of the metabolic network. All
feasible metabolic flux distributions lie within the feasible set, and (B) in the
limiting case, where all constraints on the metabolic network are known, such
as the enzyme kinetics and gene regulation, the feasible set may be reduced
to a single point. This single point must lie within the feasible set.

Fig. 2. Gene deletions in E. coli MG1655 central intermediary metabolism; maximal biomass yields on glucose for all possible single gene deletions in the central
metabolic pathways. The optimal value of the mutant objective function (Zmutant) compared with the ‘‘wild-type’’ objective function (Z), where Z is defined in
Eq. 3. The ratio of optimal growth yields (ZmutantyZ). The results were generated in a simulated aerobic environment with glucose as the carbon source. The
transport fluxes were constrained as follows: bglucose 5 10 mmolyg-dry weight (DW) per h; boxygen 5 15 mmolyg-DW per h. The maximal yields were calculated
by using FBA with the objective of maximizing growth. The biomass yields are normalized with respect to the results for the full metabolic genotype. The yellow
bars represent gene deletions that reduced the maximal biomass yield to less than 95% of the in silico wild type.

5530 u www.pnas.org Edwards and Palsson



pability of each in silico mutant metabolic network to support
growth was assessed with FBA. The simulations were performed
under an aerobic growth environment on minimal glucose
medium.

The results identified the essential (required for growth)
central metabolic genes (Fig. 2). For growth on glucose, the
essential gene products were involved in the three-carbon stage
of glycolysis, three reactions of the TCA cycle, and several points
within the PPP. The remainder of the central metabolic genes
could be removed and E. coli in silico maintained the potential
to support cellular growth. This result was related to the
interconnectivity of the metabolic reactions. The in silico gene
deletion results suggest that a large number of the central
metabolic genes can be removed without eliminating the capa-
bility of the metabolic network to support growth under the
conditions considered.

Are the in Silico Redundancy Results Consistent with Mutant Data?
The in silico gene deletion study results were compared with
growth data from known mutants. The growth characteristics of
a series of E. coli mutants on several different carbon sources
were examined and compared with the in silico deletion results
(Table 2). From this analysis, 86% (68 of 79 cases) of the in silico
predictions were consistent with the experimental observations.

How Are Cellular Fluxes Redistributed? The potential of many in
silico deletion strains to support growth led to questions regard-
ing how the E. coli metabolic genotype deals with the loss of
metabolic functions. The answer involves the degree of stoichi-
ometric connectivity of key metabolites. For illustration, the flux
redistributions to optimally support growth of a single mutant
and a double mutant were investigated.

The optimal metabolic f lux distribution for the in silico wild
type was calculated (Fig. 3). The constraints used in the LP
problem are defined in the figure legend. The in silico results
suggest that optimally the oxidative branch of the PPP was used
to generate a large fraction of the NADPH (66% in silico:
20–50% reported in the literature, ref. 29), and the TCA cycle
produced NADH. The optimal flux distribution also suggested
that the majority of the high-energy phosphate bonds were
generated via oxidative phosphorylation and acetate secretion
because of limitations of the oxygen supply.

The in silico gene deletion results predicted that the optimal
biomass yield of the zwf- (glucose-6-phosphate dehydrogenase)
in silico strain was slightly less than the wild type. The optimal
flux distribution of the zwf- in silico strain (Fig. 2) was calculated,
and the NADPH was optimally generated through the transhy-
drogenase reaction and an elevated TCA cycle flux. The PPP
biosynthetic precursors were generated in the nonoxidative
branch. This metabolic f lux rerouting resulted in an optimal
biomass yield that was 99% of the in silico wild type.

The transhydrogenase (pnt) also was deleted in silico, creating
an in silico double deletion mutant and eliminating an alternate
source of NADPH. The double mutant still maintained growth
potential. The optimal flux distribution (Fig. 2) used the isocit-
rate dehydrogenase and the malic enzyme to produce NADPH.
The optimal biomass yield of the double mutant was 92% of the
in silico wild type. The FBA results were consistent with the
experimental observations that the zwf- strain (30) and the pnt-
strain (29) are able to grow at near wild-type yields. Further-
more, the zwf- pnt- double mutant strain also has been shown to
grow (mmutantymwild type 5 57%) (29).

Discussion
Extensive information about the molecular composition and
function of several single-cellular organisms has become avail-
able. A next important step will be to incorporate the available
information to generate whole-cell models with interpretative

and predictive capability. Herein, we have taken a step in that
direction by using a set of constraints on cellular metabolism on
the whole-cell level to analyze the metabolic capabilities of the

Table 2. Comparison of the predicted mutant growth
characteristics from the gene deletion study to published
experimental results with single mutants

Gene glc gl succ ac Reference

aceA 1/1 1/1 2/2 (58)
aceB 2/2 (58)
aceEF* 2/1 (60)
ackA 1/1 (61)
acn 2/2 2/2 (58)
acs 1/1 (61)
cyd 1/1 (62)
cyo 1/1 (62)
eno† 2/1 2/1 2/2 2/2 (30)
fba\ 2/1 (30)
fbp 1/1 2/2 2/2 2/2 (30)
frd 1/1 1/1 1/1 (60)
gap 2/2 2/2 2/2 2/2 (30)
glk 1/1 (30)
gltA 2/2 2/2 (58)
gnd 1/1 (30)
idh 2/2 2/2 (58)
mdh†† 1/1 1/1 1/1 (63)
ndh 1/1 1/1 (59)
nuo 1/1 1/1 (59)
pfk† 2/1 (30)
pgi‡ 1/1 1/2 1/2 (30)
pgk 2/2 2/2 2/2 2/2 (30)
pgl 1/1 (30)
pntAB 1/1 1/1 1/1 (29)
ppc§ 6/1 2/1 1/1 (63, 64)
pta 1/1 (61)
pts 1/1 (30)
pyk 1/1 (30)
rpi 2/2 2/2 2/2 2/2 (30)
sdhABCD 1/1 2/2 2/2 (58)
sucAB 1/1 2/1 2/1 (60)
tktAB 2/2 (30)
tpi** 2/1 2/2 2/2 2/2 (30)
unc 1/1 6/1 2/2 (66–68)
zwf 1/1 1/1 1/1 (30)

Results are scored as 1 or 2 meaning growth or no growth determined
from in vivo/in silico data. The 6 indicates that suppressor mutations have
been observed that allow the mutant strain to grow. In 68 of 79 cases the in
silico behavior is the same as the experimentally observed behavior. glc,
glucose; ac, acetate; gl, glycerol; succ, succinate.
*The in vivo aceAE strain is able to grow under anaerobic growth conditions
by using the pyruvate formate lyase.

†The in silico pfk strain is able to grow by increasing the PPP flux ' 53 and
using the pps gene product to overcome PEP deficiency.

‡The in silico pgi strain is unable to grow with glycerol or succinate as the
carbon source because it is unable to synthesize glycogen and one carbohy-
drate component in the lipopolysaccharide. These are likely nonessential
components of the biomass.

§The grow on glycerol and glucose is possible through the utilization of the
glyoxylate bypass. Constitutive mutations in the glyoxylate bypass can sup-
press the ppc phenotype.

¶The in silico eno strain is able to grow by the synthesis and degradation of
serine.

\There is evidence that fba has an inhibitory effect on stable RNA synthesis (65).
Such an inhibition cannot be predicted by FBA.
**The inability of tpi mutants to grow on glucose may be related to the

accumulation of dihydroxyacetone phosphate, which leads to the forma-
tion of the bactericidal compound methylglyoxal (30).

††Very slow growth on glycerol and succinate.
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extensively studied bacterium E. coli. We have calculated the
optimal metabolic network utilization with a FBA. The in silico
results, based only on stoichiometric and capacity constraints,
were consistent with experimental data for the wild type and
many of the mutant strains examined.

The construction of comprehensive in silico metabolic maps
provided a framework to study the consequences of alterations
in the genotype and to gain insight into the genotype-phenotype
relation. The stoichiometric matrix and FBA were used to
analyze the consequences of the loss of a gene product function
on the metabolic capabilities of E. coli. The results demonstrated
an important property of the E. coli metabolic network, namely
that there are relatively few critical gene products in central
metabolism. The nonessential genes in several organisms have
been found experimentally on a genome scale (31, 32), which
opens up the opportunity to critically test the in silico predictions.
The in silico analysis also suggests that although the ability to
grow in one defined environment is only slightly altered the
ability to adjust to different environments may be diminished

(33). Therefore, the in silico analysis provides a methodology for
relating the specific biochemical function of the metabolic
enzymes to the integrated properties of the metabolic network.

The in silico analysis presented herein is not the typical
metabolic modeling; more appropriately, the analysis can be
thought of as a constraining approach. This approach defines the
‘‘best’’ the cell can do and identifies what the cell cannot do,
rather than attempting to predict how the cell actually will
behave under a given set of conditions. To accomplish this, we
have used a set of physicochemical constraints for which there is
reliable information available, in particular the stoichiometric
properties. FBA does not directly consider regulation or the
regulatory constraints on the metabolic network.

The results of FBA can be interpreted in a qualitative or a
quantitative sense. At the first level we can ask whether a cell is
able to grow under given circumstances and how a loss of the
function of a gene product influences this ability. The results
presented herein fall into this category. Quantitative predictions
would hold true if the cell optimized its growth under the growth
conditions considered. Therefore, when applying LP to predict
quantitatively the optimal metabolic pathway utilization, it is
assumed that the cell has found an ‘‘optimal solution’’ for
survival through natural selection, and we have equated survival
with growth. Although E. coli may grow optimally in defined
media, one should not expect that optimizing growth is the
governing objective of the cell under all growth conditions. For
example, the regulatory mechanisms can only evolve to stoichi-
ometric optimality in a condition to which the cell has been
exposed. Furthermore, the growth behavior of mutant strains is
unlikely to be optimal. However, FBA can still be used to
delineate the metabolic capabilities of mutant cells based on
constraining features, because both wild-type and mutant cells
must obey the physicochemical constraints imposed.

The constraints on the system accurately reflect the steady-
state capabilities of the metabolic network, but does the calcu-
lated optimal flux vector in the feasible set accurately reflect the
behavior of the actual metabolic network? It has been shown that
in a minimal media the metabolic behavior of wild-type E. coli
is consistent with stoichiometric optimality (34). Furthermore,
more detailed and critical experimental results are consistent
with the hypothesis that E. coli does optimize its growth in
acetate or succinate minimal media (33). Taken together these
results call for critical experimental investigation to evaluate the
hypothesis that stoichiometric and capacity constraints are the
principal constraints that limit E. coli maximal growth. Even
though growth and metabolic behavior in minimal media are
consistent with FBA results, one still must determine the gen-
erality of optimal performance. The call for critical experimen-
tation is particularly timely, given the increasing number of
genome scale measurements that are now possible through
two-dimensional gels (35, 36) and DNA array technology (37,
38). Furthermore, the ability to precisely remove ORFs can be
used to design critical experiments (39). The in silico model can
be used to choose the most informative knockouts and to design
growth experiments with the knockouts.

At the present time, the annotation of the E. coli genome is
incomplete, and about one-third of its ORFs do not have a
functional assignment. Thus, the metabolic genotype studied
here may lack some metabolic capabilities that E. coli possesses.
The biochemical literature also was used to define the in
silico metabolic genotype, and given the long history of E. coli
metabolic research (20), a large percentage of the E. coli
metabolic capabilities likely have been identified. However, if
additional metabolic capabilities are discovered (40), the E. coli
stoichiometric matrix can be updated, leading to an iterative
model building process. Additionally, the in silico analysis can
help identify missing or incorrect functional assignments by

Fig. 3. Rerouting of metabolic fluxes. (Black) Flux distribution for the
complete gene set. (Red) zwf- mutant. Biomass yield is 99% of the results for
the full metabolic genotype. (Blue) zwf- pnt- mutant. Biomass yield is 92% of
the results for the full metabolic genotype (see text). The solid lines represent
enzymes that are being used, with the corresponding flux value noted. The
fluxes [substrates convertedyh per g-dry weight (DW)] were calculated by
using FBA with the input parameters of glucose uptake rate (bglucose 5 6.6
mmol glucoseyh per g-DW) and oxygen uptake rate (boxygen 5 12.4 mmol
oxygenyh per g-DW) (41).
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identifying sets of metabolic reactions that are not connected to
the metabolic network by the mass balance constraints.

The ability to analyze, interpret, and ultimately predict cellular
behavior has been a long sought-after goal. The genome se-
quencing projects are defining the molecular components within
the cell, and describing the integrated function of these molec-
ular components will be a challenging task. The results presented
herein suggest that it may be possible to analyze cellular me-
tabolism based on a subset of the constraining features. Con-
tinued prediction and experimental verification will be an

integral part in the further development of in silico strains.
Deciphering the complex relation between the genotype and the
phenotype will involve the biological sciences, computer
science, and quantitative analysis, all of which must be included
in the bioengineering of the 21st century.
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