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ABSTRACT
Motivation: The metabolic models of both newly sequenced
and well-studied organisms contain reactions for which the
enzymes have not been identified yet. We present a computa-
tional approach for identifying genes encoding such missing
metabolic enzymes in a partially reconstructed metabolic
network.
Results: The metabolic expression placement (MEP) method
relies on the coexpression properties of the metabolic network
and is complementary to the sequence homology and genome
context methods that are currently being used to identify miss-
ing metabolic genes. The MEP algorithm predicts over 20%
of all known Saccharomyces cerevisiae metabolic enzyme-
encoding genes within the top 50 out of 5594 candidates for
their enzymatic function, and 70% of metabolic genes whose
expression level has been significantly perturbed across the
conditions of the expression dataset used.
Availability: Freely available (in Supplementary information).
Contact: g1m1c1@arep.med.harvard.edu
Supplementary information: Available at the following URL
http://arep.med.harvard.edu/kharchenko/mep/
supplements.html

1 INTRODUCTION
With a growing number of completely sequenced genomes,
increasing attention has been devoted to understanding the
functional coordination of individual genes in complex bio-
logical processes. Information about numerous relationships
among genes and gene products is represented at various levels
by protein–protein interaction, regulatory and metabolic net-
works. A combination of experimental and computational
techniques is being used in large-scale efforts to reconstruct
such networks (Karp, 1998; Uetzet al., 2000; Itoet al., 2001;
Forsteret al., 2003; Kaernet al., 2003). Metabolism currently
presents a particularly suitable target for computational ana-
lysis. The metabolic pathways are well characterized, and
while metabolic capabilities of various organisms can differ,
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reconstruction efforts benefit from a conserved nature of the
underlying biochemical reactions and abundance of metabolic
enzymes in multiple species. Computational reconstruction
of metabolic networks typically uses genomic information
to associate genes with enzymatic functions, thereby identi-
fying the metabolic pathways encoded by the organism.
The most common approach seeks to identify the genes
responsible for a particular metabolic function by establish-
ing sequence homology to functionally characterized pro-
teins in other species. Similar techniques have been used
extensively for general genome annotation, and a compre-
hensive set of resources has been developed for that purpose
(Tatusovet al., 1997). Although the sequence homology-
based methods have been remarkably successful overall,
they fail to assign functions to a considerable fraction of
genes (31-80%) in completely sequenced genomes (Iliopoulos
et al., 2001), and have been known to produce imprecise or
incorrect annotations (Devos and Valencia, 2001; Iliopoulos
et al., 2003).

In many cases, while there exists sufficient biological evid-
ence to believe that a given pathway is present in an organism,
one or more enzymes responsible for the critical reaction steps
cannot be identified via sequence homology methods alone.
One possibility is that the gene encoding such enzymatic func-
tion is not present in a given organism, and the reaction is
either bypassed or catalyzed by some other means. Another
possibility is that the corresponding enzymes are encoded by
genes with little or no sequence similarity to known ortho-
logs as a consequence of convergent evolution or a horizontal
transfer from a distant organism (Yanaiet al., 2002; Kunin and
Ouzounis, 2003). The identification of the enzymes catalyz-
ing individual metabolic reactions in a well-characterized or
nearly complete metabolic network has been referred to as the
‘missing genes problem’ (Osterman and Overbeek, 2003). In
contrast to the traditional problem of gene annotation, where a
functional description is assigned to a given gene, the missing
gene problem assigns a gene to a specific metabolic function.

In addition to sequence homology, various types of genomic
evidence have been used to identify the missing metabolic
genes in several organisms (Bobik and Rasche, 2001; Bishop
et al., 2002). Functional coupling to known genes has been
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inferred by analyzing gene clustering on the chromosome
(Overbeeket al., 1999), by monitoring protein fusion events
(Marcotteet al., 1999), and by studying gene co-occurrence
profiles across multiple species (Pellegriniet al., 1999). A
combination of such techniques, commonly referred to as
genome context analysis, is an integral part of the avail-
able metabolic reconstruction tools (Overbeeket al., 2000;
Osterman and Overbeek, 2003). Despite these advances, miss-
ing genes still remain abound in metabolic models of recently
sequenced and even well-studied organisms (Bonoet al.,
2003; Forsteret al., 2003).

Similarity of gene expression profiles has been used extens-
ively to assign genes to general functional categories (DeRisi
et al., 1997; Wenet al., 1998; Tavazoieet al., 1999; Wuet al.,
2002). However, prediction of specific gene function from
expression information alone has, so far, not been possible.
This suggests that an application of expression analysis to
the missing genes problem would require additional sources
of information. For example, a recent study by van Noort
et al. (2003), showed that increased prediction specificity
can be attained by considering expression conservation across
multiple species. Here, we illustrate that specific functional
predictions can be made by considering expression similar-
ity together with the structural information of the metabolic
network. Our recent work (P.Kharchenko, G.M.Church and
D.Vitkup, submitted for publication) has demonstrated a pre-
valence of local co-expression of genes in the metabolic
network. This suggests that the expression profiles of the
metabolic genes contain information about their precise loca-
tion in the metabolic network, and therefore, their enzymatic
function.

Here we present an automated method, metabolic expres-
sion placement (MEP), for selecting candidate genes for an
unassigned enzymatic function, based on the gene expression
data and structure of the partially reconstructed metabolic net-
work. The method does not directly rely on genomic data,
providing an assessment complementary to the genome con-
text analysis techniques currently being used to search for
missing metabolic genes. The effectiveness of the method
is demonstrated by restitution of known yeast metabolic
enzymes. We analyze factors determining the quality of
the predictions, and suggest strategies for targeting specific
enzymatic functions using this approach.

2 METHODS
2.1 Metabolic dependency graph, network

distance and neighborhoods
As in our previous work (P.Kharchenko, G.M.Church and
D.Vitkup, submitted for publication), metabolism was rep-
resented in a form of a metabolic gene dependency graph.
Nodes of the graph correspond to metabolic genes, the edges
to dependencies established by metabolic reactions (Fig. 1).
Dependencies between genes were established according to

K
K

K
?

K K

K
K

K

K

K

KK

K

K

Fig. 1. A schematic illustration of the MEP approach. The missing
metabolic gene (designated by the question mark) is surrounded by
known metabolic genes (marked with the letter ‘K’). The network
neighborhood formed by the known genes, consists of three neigh-
borhood layers of increasing radii, as indicated by the background
color. The MEP algorithm uses combined expression of the network
neighborhood to identify candidates for the missing metabolic genes.

the following definition:a metabolic geneX is dependent on
a geneY if and only if there exists a metabolite that is (1)
produced by a reaction catalyzed by the product of geneX;
and (2) consumed by a reaction catalyzed by the product of
geneY .

The metabolic gene dependency graph is then used to cal-
culate network distance between the genes. We define a pair
of directly dependent metabolic genesX andY to be separ-
ated by a distance 1; similarly, the distance betweenX andZ,
given dependencies betweenX → Y andY → Z, is 2 and
so on. Network distance is always symmetric, so the distance
from X to Z is equal to the distance fromZ to X. In general,
we define the metabolic network distance between genesX

andY as a length of the shortest path fromX to Y on the
undirected metabolic dependency graph. A manually curated
metabolic network model of theSaccharomyces cerevisiae
(Forsteret al., 2003) was used to construct a comprehens-
ive metabolic dependency graph, consisting of 1172 reactions
on 786 metabolic species. While any metabolite can be used
to deduce gene dependencies, the relationships established
by common cofactors, such as ATP are not likely to connect
genes with similar metabolic functions. In compiling a global
metabolic dependency graph we considered all metabolites,
excluding the following highly connected metabolic species:
ATP, ADP, AMP, CO2, CoA, glutamate, H, NAD, NADH,
NADP, NADPH, NH3, orthophosphate and pyrophosphate.

The metabolic neighborhood of radiusR around a geneX
is defined as the set of all genes separated by network distance
of R or less from geneX. Thei-th layer of the network neigh-
borhood is defined as a set of genes that are precisely distance
i from geneX.

2.2 Distances between gene expression profiles
We have used Rosetta’s ‘compendium’ dataset (Hugheset al.,
2000) as the source of gene expression information. This
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dataset measures expression profiles of over 6200 yeast open
reading frames (ORFs) across 287 deletions and 13 chem-
ical perturbations. The expression distance measure between
ORFsX and Y is calculated as 1− |corr(px ,py)|, where
corr(px ,py) is the Spearman’s rank correlation (Presset al.,
2002) between expression profile vectors ofX andY .

2.3 Cost functions
Gene candidates for catalyzing a particular unassigned meta-
bolic reaction are identified using the MEP algorithm. Given
a node L in the metabolic dependency graph, and a set of can-
didate ORFs, the MEP algorithm ranks the list of the candidate
genes; the first ORF being the most probable candidate for a
metabolic function described by L, and the last ORF being the
least probable candidate. The ordering is determined by a cost
function, which evaluates the similarity of expression profile
of each candidate ORF with each member of the metabolic
neighborhood of location L (Fig. 1). Two different types of
cost functions were tested:

F(x) = 1

|N |
R∑

i=1

∑
g∈Ni

wi

d(x,g)p
, (type1)

F(x) =
R∑

i=1

wi

〈
1

d(x,g)p

〉
g∈Ni

, (type2)

wherex is the candidate gene,R is the network neighbor-
hood radius,N is a neighborhood of radiusR around the
metabolic location L,|N | is the total number of genes in
the neighborhood,Ni is the set of genes in thei-th layer of
the network neighborhood,d(x,g) is the expression distance
between genesx andg, �w is a vector of the neighborhood
layer weights andp is a positive power factor.

2.4 Performance assessment through self-ranking
To assess the performance of the method, a self-ranking test
was conducted by running the MEP algorithm on known
enzyme-encoding genes. The candidate set comprises all
non-metabolic ORFs plus the gene being tested—a total of
5594 ORFs. The self-rank of a known metabolic gene is its
rank in the candidate gene list ordered using the cost func-
tion. The self-rank can range anywhere from 1 to 5594. A
self-rank of 1 indicates that the gene originally assigned to
the metabolic reaction was determined to be the top candid-
ate. The overall performance of the algorithm is quantified by
calculating the fraction of well-ranked genes, i.e. the fraction
of known metabolic enzyme-encoding genes that rank among
the topK candidates, whereK is chosen according to the
desired stringency.

2.5 Neighborhood layer weight optimization, and
error estimation

The optimal weight vector�w was determined by minimizing
the log sum of the self-ranks of known metabolic enzymes.

Minimization was performed using the Nelder–Mead simplex
algorithm (Nelder, 1965).

Confidence intervals on the presented results (weight values
and self-ranks) were estimated by a non-parametric boot-
strap method (Efron and Tibshirani, 1993). The set of known
metabolic genes was sampled (with replacement) to obtain
a list of genes of the same size. The weight optimiza-
tion procedure was run on the sampled list of genes and
the self-ranking performance of all known metabolic genes
was measured using the optimal weights determined for
each sample. This sampling/optimization/evaluation proced-
ure was repeated 1000 times. The 95% confidence intervals
on various self-rank statistics, and the weights themselves
were then estimated from the resulting distributions using the
percentage method.

2.6 Expression variability
The variabilityvg of an individual geneg was measured as the
number of experiments in which the expression level of the
ORFg has changed with probability>0.9. The network neigh-
borhood variability was calculated as a weighted sum of the
mean gene variability of the individual neighborhood layers:

vN =
R∑

i=1

(
wi

Ni

∑
g∈Ni

vg

)
.

3 RESULTS AND DISCUSSION
3.1 Local coexpression in the S.cerevisiae

metabolic network
Our approach for identifying missing metabolic genes relies
on the relationships between structure of the metabolic net-
work and the coexpression properties of metabolic enzymes.
In order to treat such relationships quantitatively, we estab-
lish an abstract representation of metabolism and a formal
definition of network distance between the enzymes. Exist-
ing knowledge of metabolism is used to determine a set of
metabolic dependencies among the enzymes, resulting in a
metabolic gene dependency graph (see Methods section). The
network distance between two genes is then calculated as a
shortest path between the corresponding nodes on this graph.

We have previously shown that the expression profiles of
enzymes appearing near each other in the metabolic net-
work tend to be more similar than expected by chance
(P.Kharchenko, G.M.Church and D.Vitkup, submitted for
publication). We find that the average distance between
expression profiles of metabolic genes increases monoton-
ically with their separation in the metabolic network (Fig. 2).
The fact that mean expression distance of the genes adjacent in
the network is significantly smaller than at any other metabolic
separation might suggest that the adjacent genes of a given
enzyme can be identified by simply selecting those genes
with the highest expression similarity. To test this hypothesis,
we have calculated the coexpression ranks of the adjacent
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Fig. 2. Local coexpression in the metabolic network. Mean expres-
sion distance is shown as a function of the network distance between
metabolic genes.

genes for every known metabolic enzyme. The adjacent genes,
closest in terms of their expression, have an average rank
of 759 (out of 6206 ORFs). The genes farthest in terms of
expression rank, on an average, at 4405; and the mean rank
of all adjacent genes is 2530. The distribution of the adjacent
gene ranks is shown in Figure 3a. Only 8.2% of the adjacent
enzymes appear within 50 most similarly expressed ORFs
(Fig. 3b). The enzymes with the highest similarity of expres-
sion profiles are located, on an average, at a metabolic distance
of 3.65, which is comparable with the mean metabolic distance
in the network (4.47).

3.2 Metabolic expression placement: strategy and
validation approach

These data reveal the need for a more sophisticated strategy to
identify a significant fraction of missing metabolic genes from
expression information. We sought to identify the metabolic
enzymes by considering similarity between their expression
profile and the combined expression of the surrounding meta-
bolic network neighborhood. The MEP algorithm evaluates
each candidate gene using a cost function that measures the
correspondence of its expression profile to that of members
of the individual layers of the network neighborhood (Fig. 1).
Given a set of potential candidates, the MEP algorithm sorts
them according the result of the cost function evaluation. The
method relies on partial reconstruction of the metabolic net-
work to identify metabolic neighborhood of the enzyme in
question, and thus will be effective only if a substantial part
of metabolism is already known. In other words, the algorithm
is designed to fill the gaps in the metabolic network, and not
to reconstruct the entire networkde novo.

To determine an informative network neighborhood radius,
we find a maximum metabolic distance up to which one can
still observe statistically significant coexpression levels. Bey-
ond such a distance, the coexpression ceases to be significant
enough to warrant inclusion by the MEP algorithm. The sig-
nificant coexpression radius of our network is between 3 and
4 (P.Kharchenko, G.M.Church and D.Vitkup, submitted for
publication); calculations presented in this work use a network
neighborhood of radius 3.

The co-expression structure within the network neighbor-
hood is taken into account by assigning different weights
to the contributions of individual neighborhood layers. As
mean expression distance increases with metabolic separa-
tion (Fig. 2), contributions of neighborhood layers with lower
network distance should be given more weight. Indeed, the
values of the weight vector determined by the self-rank optim-
ization procedure (see Methods section) follow this trend. The
cost function is a weighted sum of the contributions of the
individual neighborhood layers. The type 1 and type 2 cost
functions differ in the way the size of the layer is taken into
an account. The type 2 functions normalize the neighborhood
layer contributions by the number of genes in the layer, while
the type 1 functions do not. These functional types implement
the basic rational of the method. More elaborate functional
forms, for example neighbor ‘voting’, may perform better.

In order to evaluate the overall performance of the MEP
algorithm, and to determine parameters such as the optimal
type of cost function and the neighborhood weight vector, we
use a test that quantifies the ability to predict the identity of
known metabolic enzymes. The test measures a self-rank of
every known enzyme-encoding gene, which is its rank among
the set of all non-metabolic genes, in an ordering determined
by the cost function (see Methods section). A perfect predic-
tion algorithm would return a self-rank of 1 for every known
metabolic gene, and a random prediction would result in a
uniform distribution of self-ranks from 1 to 5594 (total num-
ber of ORFs that are not known to be metabolic enzymes).
The self-rank test is designed to simulate MEP algorithm per-
formance in trying to identify a missing metabolic gene. In
a practical application of the method, however, it would be
prudent to reduce the number of potential ORF candidates by
eliminating from consideration all ORFs that are known not
to be involved in a given metabolic activity, or in metabolism
in general.

3.3 Parameter optimization and performance
To select an optimal value of the power factorp, we monitored
performance of the algorithm on the entire set of known meta-
bolic enzymes. We find that the mean self-rank values improve
with increasing values ofp, reaching a constant level around
p = 10 (Figure 1 in the supplementary materials). The per-
formance of the type 1 cost functions proved to be better than
of type 2. The calculations presented in this paper use type 1
cost function with the power factorp = 15.

The neighborhood weight vector�w was determined by
minimizing the log sum of self-ranks of known metabolic
enzymes (see Methods section). Because such self-ranks are
also used to evaluate the overall performance of the algorithm,
the effects of weight vector optimization should be taken
into account. All the results presented below are reported
together with the 95% confidence intervals determined by
non-parametric bootstrap based on the 1000 random samples
of known metabolic genes (see Methods section). Mean
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Fig. 3. Coexpression of genes adjacent in the metabolic network. (a) Expression ranks of metabolically adjacent genes. For each metabolic
gene, the remaining yeast ORFs were ordered according to their expression distance to the metabolic gene. The ordering was used to calculate
the rank of the metabolically adjacent genes. Distribution of these ranks is shown. Mean rank of all adjacent genes is 2530 (dashed line,
marked ‘all’). Mean rank of the closest adjacent gene is 759 (dashed line, marked ‘best’); furthest adjacent genes rank, on an average, at 4405
(‘worst’). The inset shows the same distribution, on a different scale. (b) Fractions of the metabolically adjacent genes ranked within different
thresholds.
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Fig. 4. Validation of knownS.cerevisiae metabolic genes. (a) Distribution of self-ranks for known yeast metabolic genes, as predicted by the
placement algorithm. Error bars correspond to the 95% confidence intervals determined by non-parametric bootstrap. (b) Fraction of known
yeast metabolic genes that were self-ranked within different thresholds. For comparison, the fraction expected from a random candidate
ordering is shown by the dashed line.

value of the neighborhood weight vector�w, describing the
relative contributions of neighborhood layers was found to be
(0.892, 0.106, 0.00126), with the 95% confidence intervals of
(0.803↔ 0.970, 0.0251↔ 0.177, 4.54·10−5 ↔ 2.63·10−3).
The small value ofw3 indicates that the expression behavior
at the distance 3 is no longer informative, even though on an
average, it is still significantly more correlated than the rest
of the network.

The distribution of self-ranks generated by the MEP
algorithm is shown in Figure 4a. The distribution exhibits
a large peak at low ranks, indicating that the algorithm is cap-
able of predicting a substantial fraction of known metabolic
enzymes. Out of 564 known metabolic genes, the method
identifies 23 enzymes (with the 95% confidence interval of

21 ↔ 25) as top candidates (self-rank of 1) for their enzymatic
function; 72 enzymes (95% confidence within 69↔ 77) are
identified to be within the top 10 candidates, compared with
1 enzyme expected by chance; 134 enzymes (95% confidence
within 132 ↔ 136) are identified within the top 50 candid-
ates, with only 5 enzymes expected by chance. The fraction of
metabolic genes ranking within different self-rank thresholds
is shown in Figure 4b.

3.4 The performance impact of the expression
variability

The shape of the self-rank distribution at high ranks is rel-
atively flat (Fig. 4a), suggesting that for a large fraction of
known enzymes evaluation of the cost function was not at
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Fig. 5. Effects of expression variability. (a) Distribution of the individual enzyme variability in the Rosetta compendium dataset. (b) Depend-
ency of the MEP algorithm’s predictive ability on the variability of the target gene. Known metabolic enzymes were binned according to their
variability in groups of 49 genes, and the fraction of the enzymes predicted by the placement algorithm (within top 50 candidates) is shown
for every bin. (c) Dependence on the variability of the network neighborhood. Known enzymes were binned according to variability of their
network neighborhood into groups of 98 genes, and a fraction of genes predicted to be within the top 50 candidates is shown. (d) Predictive
ability of the algorithm is compared for all known enzymes, for the enzymes with high network neighborhood variability (above 30), and for
the enzymes with high self-variability (above 45). The fraction of predicted enzymes is shown for different self-rank thresholds. Error bars
correspond to the 95% confidence intervals determined by the non-parametric bootstrap.

all informative of their metabolic role. In other words, no
correspondence could be detected between the expression
profile of the corresponding gene and the expression of its net-
work neighborhood. While this is expected from the enzymes
whose metabolic activity is regulated primarily through post-
transcriptional mechanisms, a failure to detect expression
correspondence is more likely to be reflective of the relatively
uninformative expression dataset. For example, if a certain
region of the metabolism has not been perturbed in any of
the conditions comprising the dataset, no information can be
gained on the coexpression properties of genes within that
region.

To analyze the effects related to the information content of
the expression dataset, we introduce a gene variability meas-
ure, equal to the number of experiments in which a given
gene has been perturbed with high probability (see Methods
section). Low variability score indicates that a gene has been
perturbed rarely, if at all, in the given expression dataset, and
therefore, there is little information available to compare its

expression profile with the profiles of other genes. An expres-
sion variability distribution of the metabolic genes, presented
in Figure 5a, shows that the majority of the metabolic genes
are significantly perturbed (withP -value below 0.1) in less
than 19 out of 300 conditions measured by the Rosetta dataset,
while some metabolic genes (5%) are significantly perturbed
in over 50 conditions.

As expected, the ability of the MEP algorithm to identify the
metabolic enzymes depends considerably on the variability
of the corresponding gene in the expression dataset (Fig. 5b).
While the probability of identifying a poorly perturbed meta-
bolic gene within the top 50 candidates is below 10%, the
probability of identifying a highly perturbed metabolic gene
is ∼70%. This demonstrates that the proposed algorithm can
be very effective in identifying metabolic enzymes given an
informative dataset.

In a realistic application of the method, one would require
a way of assessing the potential performance of the algorithm
without knowing the true identity of the metabolic gene.
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Because candidate genes are ranked by matching their
expression profiles with that of the metabolic network neigh-
borhood, the quality of the prediction should be related to
the variability of genes in the neighborhood. Indeed, we find
that increased network neighborhood variability (see Methods
section) also accounts for an improvement in the self-ranking
performance (Fig. 5c), although the magnitude of the improve-
ment is smaller than for the variability of the target gene. The
probability of identifying a metabolic enzyme within the top
50 candidates is∼15% for the neighborhoods with poor vari-
ability, and∼40% for the highly variable neighborhoods. The
performance of the algorithm in identifying well-perturbed
metabolic genes, genes with high variability of the metabolic
neighborhood, and all known metabolic genes is compared in
Figure 5d. This indicates that performance of the proposed
method can be improved by increasing the amount of rel-
evant expression information, for example by utilizing an
expression dataset with conditions that specifically address
the functions performed by the metabolic neighborhood of
the target gene of interest.

4 CONCLUSIONS
With the rapid accumulation of completely sequenced
genomes, there has been an increased reliance on computa-
tional methods to reconstruct metabolic networks. Sequence
similarity and genome context techniques have proved highly
effective at assigning enzymatic functions to genes in newly
sequenced organisms. The emphasis has, therefore, shifted
towards the problem of completing metabolic models by
identifying the enzymes missing from the metabolic net-
work (Osterman and Overbeek, 2003). Here, we present a
strategy for identifying the missing genes by combining gene
expression analysis with the structural information provided
by partial reconstruction of the metabolic network.

The MEP algorithm was validated using a recently pub-
lishedS.cerevisiae metabolic network (Forsteret al., 2003).
We show, that a substantial fraction (>20%) of known
enzymes can be predicted within the top 50 out of 5594 can-
didates for their enzymatic function. The predictive power of
the method critically depends on the amount of information
provided by the expression dataset. We show that the method
is capable of predicting (within the top 50 candidates)∼70%
of the metabolic enzymes that have been significantly per-
turbed across multiple conditions of the Rosetta compendium
dataset. It is important to emphasize that our approach should
be used in conjunction with the array of genome context ana-
lysis techniques currently being used to identify the missing
metabolic genes.

The approach also represents an example of how expres-
sion information can be used to make predictions on the level
of a specific gene function. It will be interesting to test the
predictive ability of this algorithm by combining it with other
new expression analysis techniques (van Noortet al., 2003).

MEP uses available structure of the metabolic network to
enhance the predictive capability of the expression data. A
similar strategy can also be applied to gene context methods.
For example, it will be interesting to evaluate candidate
genes for a missing enzymatic function by analyzing gen-
ome co-occurrence profiles of the enzyme-encoding genes
in the metabolic network neighborhood, or by evaluating
clustering of these genes on the chromosome. As improve-
ments in sequence homology and genome context methods
enhance reconstruction of metabolic networks, the approaches
that directly take into account network structure will become
increasingly important.
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