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Abstract: Oneof the primary goals of functional genomics
is to provide a quantitative understanding of gene function.
However, the success of this enterprise is dependent on the
accuracy and precision of the functional genomic data. A
novel approach, digital analysis of gene expression (DAGE)
described herein, is an accurate and precise technology for
measuring digital gene expression on a relative or absolute
scale by simply counting the number of transcripts of a gene
being expressed at a given time. The result is a greatly
improved technology sensitive enough for identifying and
quantifying small (but biologically important and statisti-
cally relevant) changes in gene expression. Fourteen genes
involved in galactose metabolism in Saccharomyces cere-
visiae were analyzed for their expression levels in glucose
and galactose minimal media. The quantitative expression
results were characterized in terms of distributional and
accuracy attributes; theywere also in general agreement (in
terms of direction of change) with corresponding results
obtained using microarray technology. DAGE is likely to
have profound implications in the field of functional
genomics because the gene expression measurements are
digital in nature and therefore more accurate than any other
technologies. B 2004 Wiley Periodicals, Inc.
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INTRODUCTION

The Human Genome Project sparked DNA sequencing ini-

tiatives for a number of model organisms from all the major

kingdoms of life, and currently there are many completely

sequenced and annotated genomes publicly available (http://

www.tigr.org/tdb/mdb/mdbcomplete.html). Subsequent

bioinformatics analysis has then brought us to the brink of

having a complete molecular ‘‘parts catalogue’’ of many

organisms. Such compositional and structural molecular

information is of great value. However, a critical question

has arisen (Hieter and Boguski, 1997; Koshland, 1998): how

can genomic data be used in tandem with bioinformatics to

analyze, interpret, and predict the relationship between an

organism’s genotype and its phenotype?

The molecular parts catalogue now needs to be translated

into functional information, and this undertaking is like-

ly more challenging than identifying the individual parts

(Fields, 1997; Hieter and Boguski, 1997). The systematic

study of cellular function by generation and collection of

high-throughput data and computational tools has been

called systems biology. However, broad applicability of

systems biology is currently hindered by the limitations of

the current measurement technologies. Thus, experimental

and statistical tools need to be developed for generating

high-quality, high-throughput data for efficiently extracting

useful biological information.

A number of technologies have been developed for acquir-

ing gene expression information on a whole-transcriptome

level. The techniques currently in vogue are based on direct

sequence analysis (Adams, 1996), differential display

(Fislage, 1998), or specific hybridization of complex cDNA

or mRNA probes to microarrays of oligonucleotides or

cDNAs (Brown et al., 1998; Brown and Botstein, 1999; Elek

et al., 2000; Ramsay, 1998). These approaches are all limited

in the dynamic range of the measurements and by their

inability to produce digital measurements (Brenner et al.,

2000; Velculescu et al., 1995). Two high-throughput ap-

proaches have been developed to make ‘‘digital’’ measure-

ments or measurements involving simple counting of gene

expression, thus providing more accurate and more precise

measurements (Brenner et al., 2000; Velculescu et al., 1995).

The digital gene expression measurement technologies rely

on counting the number of times a transcript occurs in a

sample. Digital approaches are distinct from (and often more

accurate than) other high-throughput approaches that rely on

the fluorescent intensity for quantification. However, digital

approaches are of limited practical utility because they are

time consuming and expensive.

The premise of this paper is that, by using in-situ PCR,

the accuracy and precision of ‘‘digital’’ approaches can be
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maintained while greatly reducing the cost. The in-situ PCR

method involves an amplification reaction in a polymerized

acrylamide matrix containing standard PCR reagents and

DNA template (Butz et al., 2003; Merritt et al., 2003; Mitra

et al., 2003; Mitra and Church, 1999). As the products re-

main localized near their respective templates, an immobi-

lized single DNA template molecule amplifies locally and

gives rise to a PCR colony, or ‘‘polony’’. Herein, we des-

cribe a transcript profiling technology using in-situ PCR as

the digital readout called Digital Analysis of Gene Ex-

pression (DAGE). We have quantitatively measured the

expression levels of 14 Sacchromyces cerevisiae genes

involved in galactose regulation andmetabolism. As the data

obtained is digital in nature, rigorous statistical procedures

have been developed for its analysis.

MATERIALS AND METHODS

Strains and Growth Conditions

Yeast FY4 cells were grown in glucose (2%) and galactose

(2%) minimal media at 30jC until the cells reached steady

state andwere harvested at an optical density (600 nm) of 1.0.

Yeast cellswere collected as 10-mLaliquots, quick-chilled to

4jC in liquid nitrogen, and centrifuged at 4,000 rpm at 4jC,
and the cell pellets were used for RNA extraction.

cDNA Preparation

Total RNA was isolated from S. cerevisiae FY4 strains

grown as described above. The pellets were resuspended in

RNAwiz buffer (Ambion). Cells were lysed using a Mini-

BeadBeater(Biospec),andRNAwasisolatedaccording tothe

manufacturer’s protocol. Contaminating DNA was digested

using DNAse I according to the manufacturer’s protocol

(Gibco). Total RNA levels were quantified using A260

measurements. cDNA was synthesized using Reverse Tran-

scriptase-II (Gibco) according to the method outlined by the

supplier with Oligo dT18 as a primer. The cDNAwas purified

by RNaseH (Gibco) digestion and treated with 5 AL of

Clontech enzyme removal resin and ethanol precipitated.

Gene Selection and Primer Design

Fourteen genes involved in galactose metabolism and

regulation were selected for expression analysis. Primers

used to amplify a portion of the 3V region of each gene were

designed using Vector NT1 software (InfoMax) with the

coding region as input. The entire genome was also input to

ensure the specificity of primers for the gene of interest.

Primers were designed to amplify regions between 250 and

350 bp. All primers used are listed online in the

supplementary information, in Supplementary Table I.

Expression Profiling Using PCR Colonies

Purified first-stand cDNA (at the appropriate dilutions) was

used as a template in the PCR reaction. Then based on this

initial concentration the starting cDNA concentration was

adjusted to create distinguishable non-overlapping polonies.

Polony reactions were conducted as previously described

(Butz et al., 2003; Merritt et al., 2003; Mitra et al., 2003;

Mitra and Church, 1999)

Polony Gel Preparation

Preparation of Slides

Teflon coated slides (Erie Scientific) were treated with Bind

Silane (Amersham, Inc.) per manufacturer’s instructions.

Table I. Comparison of the gene expression of glucose and galactose.*

Fold increase

Gene Log sA (gluc) Log sB (gal) 95% confidence interval on y P value DAGE data Microarray data

GAL1 1.72 4.32 (2.47, 2.74) 0 398.66 42.14

GAL2 1.89 5.01 (2.97, 3.27) 0 1310.69 214.42

GAL3 1.97 2.63 (0.68, 1.08) 0 4.53 9.90

GAL4 2.10 1.74 (�0.47, �0.24) 0.001 0.44 1.21

GAL7 1.02 3.47 (2.31, 2.60) 0 285.69 2.43

GAL10 0.41 3.68 (2.87, 3.67) 0 1857.80 29.54

GAL80 2.15 2.84 (0.51, 0.87) 0 4.87 3.00

TUP1 2.39 2.71 (0.19, 0.44) 0.001 2.07 1.30

PGK1 4.19 3.95 (�0.51, 0.03) 0.074 Not significant 0.92

MIG1 1.05 1.40 (0.08, 0.63) 0.027 2.25 2.80

ADE13 2.42 2.65 (0.10, 0.36) 0.006 1.70 0.33

HXT1 0.53 0.52 (�0.40, 0.37) 0.932 Not significant 2.00

HXT10 0.42 0.36 (�0.33, 0.23) 0.627 Not significant 1.67

HXT14 0.10 0.58 (�0.03, 0.98) 0.057 Borderline 2.47

*Log sA = Log10 number of polonies per microgram of glucose first-strand cDNA. Log sB = Log10 number of polonies per microgram of galactose first-

strand cDNA.

y = Log sA � Log sB = Log (sA/sB); Log10 (fold increase).
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Step 1—Master Mix: A 250-AL master mix was prepared by

adding the following components: 1.5� Jumpstart Taq, 10�
buffer, 0.52 AM dNTPs, 0.25% BSA (Sigma), 0.25%

Tween 20, 0.75 AL of forward and reverse primers

(100 AM, and 12% degassed acrylamide/bis-acrylamide

(19:1). Step 2—ReactionMix: A 51.33-AL aliquot of reaction

mix was prepared using the following components: 1st strand

RT - products (2 AL), master mix (44.5 AL), 16.65 U of

Jumpstart Taq DNA Polymerase, 5 U/AL (Sigma), 0.85 AL
APS (5%), and 0.85 AL TEMED (5%). DNA Template: An

optimum concentration of DNA must be determined by

conducting polony reaction with a series of dilutions for each

primer being used. An optimum concentration was deter-

mined experimentally by creating non-overlapping polonies.

The number of polonies or transcripts that can be detected

with our scanner on a polony gel can range from 1 tof3000.

The reaction mix was thoroughly mixed, and 20 AL was

injected into the well. From each reaction mix, two slides

were prepared. After the slide was loaded, the cover glass

was adjusted to completely cover the well. Immediately after

this step a hybridization chamber (Grace Biolabs) was

adhered to the slide and the gel was polymerized for 10 min.

Light mineral oil was injected into the open ports of the

hybridization chamber, and the ports were sealed with

sealants supplied by the manufacturer.

Thermal Cycling

Polony slides were thermal cycled in an in-situ PCR

hybridization tower (MJ Research). The following cycling

conditions were used: 96jC for 2 min followed by 40 cycles

of 96jC for 30 s, 62jC for 45 s, and 72jC for 30 s. The final

extension step was set for 72jC for 2 min.

Staining and Visualization

After PCR amplification, the hybridization chambers were

removed and the slides were immersed in hexane (Sigma)

for 10 min. The cover glass was then removed. The gels

were then stained in 2� SYBR green for 10 minutes. Po-

lonies were visualized using a Scanarray 5000 scanner.

Statistical Analysis

The primary objective of statistical analysis was to

investigate the suitability of the proposed analysis technique

and to characterize the inherent statistical distributional

properties. Serial dilutions of the cDNA from the galactose

minimal media culture were made at the rate of 50% of the

previous dilution. The highest expressed gene GAL2 was

chosen to test each dilution for model adequacy and sta-

tistical distributional properties. After this characterization,

the methodology was then used to determine the gene

expression levels for 14 genes between the conditions of S.

cerevisiae grown in galactose and glucose minimal media. A

detailed description of the statistical model and explanation

is provided in the online supplement.

RESULTS AND DISCUSSION

The basic procedure for DAGE is illustrated in Figures 1

and 2, and we used this approach to quantitatively measure

the expression level of 14 genes in galactose and glucose

minimal media at two dilutions per gene replicating each

experiment twice. The results are summarized in Table I

and II. The GAL genes, with the exception of GAL 4, were

highly expressed in galactose and expressed at relatively low

levels in glucose. This is in general agreement with the

relative expression level changes determined from micro-

array data (Dudley et al., 2002). Note also that the DAGE

technique has a larger dynamic range than do other

expression profiling techniques (Yuen et al., 2002). Namely,

we were able to quantitatively measure gene expression at

very low levels with similar precision as to measurements at

very high expression levels; furthermore, the upper limit of

detection is unbounded because one can always increase the

dilution an unlimited number of times.

We obtained several key results which are summarized

below and in Tables I and II:(1) We have provided absolute

levels of expression for each gene in specitic growth con-

ditions the 95% confidence intervals for the absolute levels

of expression and the differential expression (in the two

media), and the P-value associated with the hypothesis that

Figure 1. Concept of DAGE. Total RNA is reverse transcribed into

cDNA and PCR amplified with specific genes. The‘‘red’’ cDNA molecule

corresponds to the cDNA molecule of interest that we will quantitatively

measure. The ‘‘black’’ cDNA molecules indicate all other transcripts.
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the indicated differential expression is not significant.

(2) The expression level of the housekeeping gene, PGK1,

was not significantly different between the two conditions,

which is consistent with the microarray data. (3) The ex-

pression levels of three hexose transporter genes (HXT1,

HXT10, and HXT14) reported here demonstrate another

important attribute of this technique. The HXT genes are

homologs that exhibit a large degree of similarity at the

DNA sequence level (HXTl is 68% identical to HXT10

over 1,523, bp HXT1 is 56% identical to HXT14 over

608 bp); therefore, we expect that the accuracy and pre-

cision of the expression measurements using hybridization

based methods may be in doubt. However, using DAGE we

were able to target the unique regions with PCR primers to

obtain accurate expression measurements. (4) GAL gene—

GAL1, GAL2, GAL3, GAL7, GAL10, and GAL80—

showed a significantly higher expression in galactose than

in glucose. The differential expression of the GAL genes

between the two growth conditions shows a much higher

range of detection than obtained by the microarray

hybridization, which is consistent with the literature (Yuen

et al., 2002). This further validates the sensitivity and the

range of detection of the DAGE approach.

CONCLUSIONS

The DAGE technique we have developed and discussed

here is very well suited to substitute several applications for

which traditional gene expression techniques have thus far

been acceptable, i.e., Northern analysis and quantitative

PCR. DAGE can be used to complement gene expression

profiling methods such as SAGE and microarrays; for ex-

ample, it is particularly useful for confirming transcript

differences for low abundant SAGE tags. To achieve

statistically significant SAGE tag data of low expressed

genes a great deal of sequencing is required thus incurring

significant costs. DAGE can be substituted and can reduce

the cost of sequencing significantly. DAGE can also be

used after microarray analysis to confirm gene expression

differences for genes that are too close to call for ex-

pression differences. Expression profiles of multigene

families and splice variants cannot be distinguished using

microarrays due to the problems of cross hybridization. In

such cases, DAGE can be used to distinguish the gene

expression because gene specific and sequence specific

primers can be used to analyze gene expression.

DAGE is likely to have a profound impact on the field of

functional genomics because of the digital nature of the data

wherein the absolute or relative number of transcripts can be

estimated more precisely and accurately. A key limitation

of this method is that it is currently ‘‘low throughput’’

in nature. Therefore, efforts are underway to develop a high-

throughput polony technology to simultaneously analyze

thousands of genes on a single chip as a highly efficient tool

for large-scale gene expression studies at the whole-

transcriptome level.
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APPENDIX/ONLINE SUPPLEMENT

Statistical Framework for DAGE

One of the primary goals of functional genomics is to provide

a quantitative understanding of gene function. Therefore, it

is essential to generate high-quality gene expression data

and to develop effective statistical tools for gene expression

data analysis.

Many techniques have been developed for estimating the

differential expression for the gene(s) of interest, each

incorporating varying degrees of statistical rigor (Audic and

Claverie, 1997; Chen et al., 2002; Ibrahim et al., 2002;

Newton et al., 2001; Olshen and Jain, 2002; Rocke and

Durbin, 2001). However, the fundamental problems asso-

ciated with these techniques for generating gene expres-

sion data still remain; namely, there are many sources of

systematic as well as random errors that ultimately limit

the accuracy of the measurement. Hence, even with a

prohibitively large number of carefully replicated experi-

ments, the experimental data may be inadequate for

estimating the desired expression levels with sufficient

confidence. It is generally recognized therefore that

effective design and analysis of gene expression data

remains a significant bottleneck. The data generated by the

most accurate procedures are still extremely noisy by classic

statistical data analysis standards creating signi-

ficant statistical analysis challenges (Nadon and Shoe-

maker, 2002; Sebastiani et al., 2003). Developing a

rigorous statistical framework for proper analysis of dig-

ital gene expression data from DAGE is therefore of

prime importance.

The first set of experiments was conducted to establish

a formal basis for the statistical analysis of DAGE data.

The primary objective was to investigate the suitability of

the proposed analysis technique and to characterize

the inherent statistical distributional properties. For this

purpose, a single gene (GAL2) was amplified from cDNA

isolated from yeast grown in galactose minimal media. The

original cDNA sample was sequentially diluted by 50% each

step, and for each dilution, five replicated measurements of

the amount of cDNA were performed. The GAL2 gene was

selected because it was very highly expressed in galactose

minimal medium. After this characterization, the method-

ology was then used to determine the gene expression levels

for fourteen genes between the conditions of S. cerevisiae

grown in galactose and glucose minimal media from data

gathered as described below.

The experimental sample consisted of first-strand cDNA

products (from cells grown in galactose minimal medium)

at a concentration of f5.3 Ag/AL. The gene expression

level, denoted by N, is the total number of the cDNA

molecules contained per microgram of total first-strand

cDNA; this transcript number can, in principle be deter-

mined by directly counting the polonies. However, very

high concentrations of cDNA do not always yield easily

discernible polonies due to polony overlap. It was therefore

often necessary to dilute (depending on the gene and the

growth condition) the original sample down to an appro-

priate level at which the polonies could be distinguished

and counted reliably. The number of polonies in the

original undiluted sample can then be derived from the

diluted sample count by accounting for the extent of di-

lution. To systematize this strategy, we employed the fol-

lowing experimental procedure: the original sample was

first diluted to 50% of the initial concentration, giving rise

to samples containing 50% fewer transcripts than the orig-

inal undiluted sample. The samples resulting from this first

dilution were then themselves subsequently diluted, again

by 50%, to obtain second-generation samples. This was

repeated sequentially for several more generations with

each sequential generation diluted to 50% of the preceding

one. Observe that theoretically each dilution generation

should have 50% fewer transcripts than the previous one.

For our characterization experiments, we employed five

sequential cDNA dilutions beginning from the highest

concentration that yielded discernible polonies. At each

dilution, the experiment was replicated five times; and in

every case, the experimental sample was divided into two

sets, A and B, providing duplicate measurements of the

transcript number for each replicate.
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Framework for Statistical Analysis

The basic principle of the technique is that if N is the total

number of cDNA molecules (per Ag of total first strand

cDNA) of the specific gene in the original sample, then at

the ith dilution in the sequence of dilutions, the observed

polony count (per microgram of total first-strand cDNA), yi
is given by (assuming 100% efficiency of reverse tran-

scription and PCR polony generation)

yi ¼ d�1
i N ðS1Þ

where di is the ith dilution factor, the extent to which the

original number of transcripts have been reduced via i

sequential dilutions; its numerical value is obtained from

di ¼ 2i�1: ðS2Þ

For example, for the original sample, i = 1, so that di = 1

and yi = N; for the second dilution, where the analyzed

sample has been diluted by 50%, i = 2, di = 2, and yi = aiN.

Observe that, as a result of our experimental strategy, the

dilution factor sequence di is exponential in i, the dilution

number [see Eq. (S2) above] motivating a logarithmic

transformation of Eq. (S1) to obtain:

log10 yi ¼ �log10 di þ N log10: ðS3Þ
This is the underlying working model to use in determining

the desired gene expression level, N, from the observed

polony count data. If this model is adequate for the

methodology, then a log–log plot of the data yi versus the

dilution factor di should yield a straight line with slope �1

and an intercept of N (the undiluted transcript count).

Model Adequacy

Starting with an original sample with a concentration of

5.26 Ag of total cDNA per AL of solution, we collected

experimental data as discussed above. The rawdata consisted

of polony counts that were then normalized to obtain Ni, the

count per microgram of total first-strand cDNA.

Supplementary Figure 1 shows a log–log plot of the data

yi versus the dilution factor di, along with a summary of

regression analysis results. First, linear regression analysis

yielded estimates of the slope and intercept respectively as

�0.995 and 5.066. Subsequently, a hypothesis test that the

Supplementary Figure 1. Characterization of Gal2 gene expression in galactose minimal medium. The graph shows the effect of dilutions on the polony

count. Each data cluster shows normalized polony count obtained at the indicated dilution. Log d, log10 of the dilution factor; Log y, log10 of the normalized

count per microgram of cDNA.
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observed Slope is significantly different from the expected

theoretical value of�1 yielded a P value of 0.924, indicating

that the estimated slope is not significantly different from the

expected value of �1 and confirming the adequacy of the

model in Eq. (3) for describing the methodology.

It should be noted that the regression analysis also

provides an estimate of the desired expression level, log10 N,

as 5.066. Additionally, the regression analysis identified two

of the observations at log d = 4.52 as outliers because of large

standardized residuals; this will be of importance at the next

stage of the analysis. We conclude from both the general

qualitative indication of a linear relationship and the

quantitative confirmation that the slope of �0.995 was not

significantly different from �1.0, that the model in Eq. (S3)

is adequate.

Distributional Characteristics

The second part of our objective was to characterize the

distributional properties of the data and the implied error

statistics associated with the experimental technique and

the analytical procedure. For this purpose we return to the

model underlying the analytical procedure, as derived above

in Eqs. (S1)–(S3). By defining

ni ¼ yidi ðS4Þ
(the expression level as determined directly from each

individual observation, accounting for the extent of

dilution), then from Eq. (S3), the associated experimental

error, qi is given by

log10 ni ¼ log10 N þ qi ðS5Þ

Supplementary Figure 2. Distributional characteristics of log10 si data. The P value for the normality test is 0.124, indicating that the data distribution is

reasonably normal.

Supplementary Table I. Primers used in Digital Analysis of Gene

Expression

Genes Primer Sequences

GAL1YBR020W GCACAATCCTTGAATTGTTCTCGCG

CGGGAACCATATGATCCATTTGACA

GAL2YLR081W TTCACCCCATTCATCACATCTGCC

CTAGCATGGCCTTGTACCACGGTT

GAL3YDR009W GGCGCTAAACTGTTCACGTGAGGA

CCGAAAGAACCATTTGCTAGGGCA

GAL4YPL248C CATCCCTGTAGTGATTCCAAACGCG

CATTAGTGCCACTGACCCCGTCTG

GAL7YBR081C GTAGCTGATCTCAGTAAAGGTGGG

TGTTCCATACTGGGCCATCTGGC

GAL10YBR019C GGAATCGGGATGAAAAGCCTTGAC

GCCATATGGAGACACTATTGAGGG

GAL80YML051W ATGAGCGTGGTAACCGATTGGGC

TGGCTAGCGGGAAGTCGTTTGC

TUP1YCR084C CGTTATATTCTGGACCCAGCGGAGA

GGACAAAGCGTTGTATCCGGCTCA

PGK1YCR012W CGGTGACTCCATCTTCGACAAGGC

TGACGGTGTTACCAGCAGCAGAGC

MIG1YGL035C CTACTTAGCATTGTCGTGGGCGTGG

TGAAACTGAACGCGTTATCGTCCC

ADE13YLR359W AAACTGCATCCGTTCAATGGTTCG

CCTTGACTACTGCTGCGGCTTGAT

HXT1YHR094C GACCATACCGACAGCACCCCACAT

TCGAAGAAATGAGAGCCGCTGGTA

HXT10YFL011W ATTCAATACAGTGGCGGGTTCCCT

CTGGCATTTCCAACAGCCCTTTCT

HXT14YNL318C TCCGTTTCTCTTCCAAATGTCCCC
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the deviation of the individual ‘‘observed’’ quantity log10 si
from the true—but unknown—expression level (log10 N).

A histogram of the log10 si data with a normal curve

superimposed is shown in Supplementary Figure 2. The

summary statistics of the data are as follows: mean = 5.11,

(95% confidence interval [5.09, 5.13]); standard deviation =

0.093, (95% confidence interval [0.077, 0.118]). With a p-

value of 0.124 for the normality test, the implication is that

the data distribution is not significantly different from a

theoretical normal distribution with the indicated mean and

standard deviation.

Furthermore, a one-way ANOVA of log10 si data versus

dilution number yielded a p-value of 0.667 for data set A and

a value of 0.570 for data set B, from which we conclude that

there is no significant systematic effect of dilution number. A

similar analysis of the data versus the replication number

yielded a p-value of 0.549 for data set A and a p-value of

0.583 for data set B, fromwhich we again conclude that there

is no significant systematic effect of replication number.
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