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An important goal of whole-cell computational modeling is to
integrate detailed biochemical information with biological intu-
ition to produce testable predictions. Based on the premise that
prokaryotes such as Escherichia coli have maximized their growth
rate along evolution, flux balance analysis (FBA) predicts metabolic
flux distributions at steady state by using linear programming.
Corroborating earlier results, we show that recent intracellular flux
data for wild-type E. coli JM101 display excellent agreement with
FBA predictions. Although the assumption of optimality for a
wild-type bacterium is justifiable, the same argument may not be
valid for genetically engineered knockouts or other bacterial
strains that were not exposed to long-term evolutionary pressure.
We address this point by introducing the method of minimization
of metabolic adjustment (MOMA), whereby we test the hypothesis
that knockout metabolic fluxes undergo a minimal redistribution
with respect to the flux configuration of the wild type. MOMA
employs quadratic programming to identify a point in flux space,
which is closest to the wild-type point, compatibly with the gene
deletion constraint. Comparing MOMA and FBA predictions to
experimental flux data for E. coli pyruvate kinase mutant PB25, we
find that MOMA displays a significantly higher correlation than
FBA. Our method is further supported by experimental data for
E. coli knockout growth rates. It can therefore be used for predict-
ing the behavior of perturbed metabolic networks, whose growth
rate is in general suboptimal. MOMA and its possible future
extensions may be useful in understanding the evolutionary op-
timization of metabolism.

The enormous number of components and interactions in a
cell, together with the uncertainty about many parameters

describing cellular dynamics, greatly hinder the task of perform-
ing accurate whole cell simulations. Consequently, computa-
tional efforts based on conceptual shortcuts are essential. One
area in which such simplifications have proved extremely useful
is metabolic f lux analysis (1–7). Notably, f lux balance analysis
(FBA) (8–11), a method for studying the capabilities of meta-
bolic networks at steady state, constitutes an example of how the
knowledge of a restricted set of parameters in a system, com-
bined with the application of fundamental thermodynamic and
evolutionary principles, can generate quantitative predictions
and testable hypotheses. In FBA, the constraints imposed by
stoichiometry in a chemical network at steady state are treated
analogously to Kirchoff’s law for the balance of currents in
electric circuits (2, 12). Thus, for each of M metabolites in a
network, the net sum of all production and consumption fluxes,
weighted by their stoichiometric coefficients, is zero:

�
j � 1

N

Sijvj � 0 i � 1, . . . , M. [1]

Here, Sij is the element of the stoichiometric matrix S corre-
sponding to the stoichiometric coefficient of metabolite i in
reaction j. The flux vj is the rate of reaction j at steady state, and
is the j-th component of an N-dimensional f lux vector v, where
N is the total number of fluxes. In addition to internal f luxes,
which are associated with chemical reactions, v includes ex-

change fluxes that account for metabolite transport through the
membrane. The steady-state approximation is generally valid
because of the fast equilibration of metabolite concentrations
(seconds) with respect to the time scale of genetic regulation
(minutes) (1, 6).

Additional constraints, including those that relate to the
availability of nutrients or to the maximal fluxes that can
be supported by enzymatic pathways, can be introduced as
inequalities

�j � vj � �j. [2]

For example, for a substrate uptake flux vj, one can set �j and �j
equal to the corresponding measured or imposed value. Eq. 2 can
also be used to distinguish reversible and irreversible reactions,
where �j � 0 for the latter. Additional constraints are invoked
to represent the requirement for metabolic homeostasis, and can
be expressed in terms of linear relationships similar to Eq. 1
(8, 13).

All f lux vectors that satisfy the constraints mentioned above
define a feasible space, �. For an underdetermined system, as is
typically the case in FBA models of cellular metabolic networks
(11), � is a convex set in the N-dimensional space of fluxes (14).
Because of the linear nature of �, it is possible to use linear
programming (15) to characterize the points in � that maximize
or minimize a given linear objective function. A natural choice
for an objective function in metabolic models of prokaryotes is
the rate of biomass production (8, 9, 13), as it is reasonable to
hypothesize that unicellular organisms have evolved toward
maximal growth rate. This process is formalized by introducing
a growth flux that transforms a linear combination of funda-
mental metabolic precursors into biomass (see Methods).

The availability of annotated genomic sequences has led to
FBA metabolic models of various microorganisms, including
Haemophilus influenzae (16), Escherichia coli (13, 17, 18), and
Helicobactyer pylori (19). The existence of about 100 fully
sequenced and annotated genomes (and many more in pipeline)
paves the way for wide-scale application of flux analysis of the
corresponding metabolic networks (5).

The theoretical basis of FBA is supported by several experi-
ments. These include empirical validation of growth rate and flux
predictions (8, 9), measurements of uptake rates around the
optimum under various conditions (18), as well as results from
large-scale gene deletion experiments (20). Additional strong
support based on intracellular flux comparisons is presented
here in Fig. 3 A, D, and G.

An important application of FBA is the prediction of pheno-
typic effects arising from complete or partial metabolic gene
deletions (13, 17, 21). A complete gene deletion is implemented
by constraining the corresponding flux to zero. Linear program-
ming provides then the flux distribution and maximal growth
rate for the new genotype. Crucially, this approach assumes that
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the mutant bacteria display an optimal metabolic state; yet,
mutants generated artificially in the laboratory are generally not
subjected to the same evolutionary pressure that shaped the wild
type. Therefore knockouts probably do not possess a mechanism
for immediate regulation of fluxes toward the optimal growth
configuration. To better understand the flux states of mutants,
we introduce here the method of minimization of metabolic
adjustment (MOMA) (Fig. 1A), which is based on the same
stoichiometric constraints as FBA, but relaxes the assumption of
optimal growth rate for gene deletions. A mutant is likely to
initially display a suboptimal flux distribution that is somehow
intermediate between the wild-type optimum and the mutant
optimum. MOMA provides a mathematically tractable approx-
imation for this intermediate suboptimal state, based on the
conjecture that the mutant remains initially as close as possible
to the wild-type optimum in terms of flux values. In other words,

through MOMA, we test the hypothesis that the real knockout
steady state is better approximated by the flux minimal response
to the perturbation than by the optimal one. Predicting a
metabolic phenotype by MOMA involves a different optimiza-
tion problem than FBA, namely distance minimization in flux
space. To this end, because distance in flux space is a quadratic
function, we employ quadratic programming (QP) (see also ref.
22). In the present work we compare FBA and MOMA predic-
tions for E. coli with experimental data from different sources,
and find that MOMA can serve as a more precise method for
predicting the metabolic phenotype of gene knockout bacteria.
In addition to proposing MOMA as a computational tool for the
analysis of artificially engineered bacteria, we suggest that this
approach can help understand how a cell adapts to the loss of a
gene by regulation and evolutionary optimization.

Methods
For the stoichiometric analysis of the metabolic network of
E. coli, we have used the reconstruction by Edwards and Palsson
(13). The list of metabolic reactions, and the 436 (metabolites)
by 720 (f luxes) stoichiometric matrix (available at http:��
gcrg.ucsd.edu�downloads.html) were compiled using data from
public databases and literature. This in silico model of E. coli
MG1655 metabolism encompasses central carbon metabolism,
transmembrane transport reactions, carbon source utilization
pathways, as well as the metabolic pathways responsible for the
synthesis and degradation of amino acids, nucleic acids, vitamins,
cofactors, and lipids (13). As in previous FBA formulations, we
use inequalities (Eq. 2) to limit nutrient uptake and to implement
reaction irreversibility, and we include all f luxes related to
maintenance requirements (8, 18). Reconstruction of other
E. coli strains analyzed in this work, JM101 and PB25 (4), re-
quired minimal changes with respect to MG1655 (see support-
ing information, which is published on the PNAS web site,
www.pnas.org).

Flux Balance Analysis. In FBA the maximization of biomass
production rate is implemented by defining an additional f lux
vgro associated with cell growth. For this f lux, the stoichiometric
factors of the reactants are the experimentally known propor-
tions of metabolite precursors contributing to biomass produc-
tion (13, 23):

c1X1 � c2X2 � � � � � cMXMO¡
vgro

1 Biomass. [3]

The search for the flux vector maximizing vgro under the con-
straints (1) and (2) is solved by the simplex algorithm. We denote
here by vWT the solution of FBA for the wild-type organism in
its feasible space �WT. A knockout of the enzyme catalyzing
reaction j is obtained by imposing the extra constraint vj � 0.
Such condition defines the feasible space �j for the mutant
strain. The solution for knockout j is denoted by vj.

Our PERL implementation of FBA, whose results we verified
matching previous FBA calculations, uses the open source GNU
Linear Programming kit (24).

Minimization of Metabolic Adjustment. In MOMA we search for a
point in �j that has minimal distance from a given flux vector w
(Fig. 1 A). The goal is to find the vector x � � j such that the
Euclidean distance

D�w, x� � ��
i � 1

N

�wi � xi�
2 [4]

Fig. 1. (A) The optimization principles underlying FBA and MOMA. A
schematic 2-dimensional depiction of the feasible space for the wild-type
(�WT) and for mutant of flux j (�j) is represented by the green and superim-
posed yellow polygons. The coordinates are two arbitrary representative
fluxes, an extremely simplified version of the multidimensinal flux space. The
solution to the FBA problem is the point that maximizes the objective function
(red line). An optimal FBA prediction can be computed both for the wild-type
(a) and for a knockout (b). The alternative MOMA knockout solution (c),
calculated through QP, can be thought of as a projection of the FBA optimum
onto the feasible space of the mutant (�j). The mutant FBA optimum and the
corresponding MOMA solution are in general distinct. (B) Robustness analysis
for partial deletions. Constraints corresponding to partial gene knockout lead
to a feasible space that is intermediate between �WT and �j (pale green). On
such intermediate spaces, both the FBA optimum (b�) and the MOMA projec-
tion (c�) can be calculated. (C) A robustness analysis method unique to MOMA.
One can perform a sampling of the feasible space around the optimum found
by simplex in FBA (point a), and find correspondent MOMA projections. The
robustness of the MOMA solutions is calculated for a defined threshold of
sensitivity of the objective function, for N points obtained by limiting the
corresponding fluxes to a given fraction of their wild-type value. This method
is useful also for studying the possible multiplicity of MOMA solutions in case
alternative FBA optima are present (points a and a�).
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is minimized (22). Stated as a standard QP problem (15, 25), the
aim is to minimize

f�x� � L�x �
1
2

xTQx [5]

under a set of linear constraints. In Eq. 5, the vector L of length
N and the N � N matrix Q define the linear and quadratic part
of the objective function, respectively, and xT represents the
transpose of x. By observing that minimizing the function D of
Eq. 4 is equivalent to minimizing its square, and that constant
terms can be omitted from the objective function, one can choose
Q to be an N � N unit matrix and set L � �w, and hence reduce
the minimization of D to the minimization of f(x). Here we are
interested in the case w � vWT, i.e., in finding the point uj in �j,
which is closest to the wild-type point (as calculated with FBA).
Although a formal proof is not offered in this context, it can be
intuitively inferred that, if a solution for the wild-type FBA
problem vWT exists, and if the space �j is not empty (i.e., the
constraint vj � 0 is compatible with the other constraints), then
a solution to this problem always exists. Its uniqueness is
guaranteed by the convexity of f(x), which in turn derives from
Q being semipositive definite (15). We emphasize that in
MOMA, in contrast to FBA, the objective function does not
explicitly depend on the biomass production rate. Its linear part
reflects the vector of fluxes of the wild type, whereas its
quadratic part is the square of the Euclidean norm of x.

For QP, the IBM QP Solutions library (26) was used. The rate
of growth for the mutant can be evaluated after minimization by
inspection of the corresponding flux (ugro

j ). Time required for
calculating one FBA or MOMA solution is of the order of 2 sec
on a Pentium III computer running Linux.

Robustness Analysis. Two methods were used to assess the stability
of MOMA-predicted flux points. The first (Fig. 1B) is analogous
to the robustness analysis previously described for FBA (21),
whereby one follows the gradual change in growth rate as vj is
varied from vj

WT to zero. In MOMA one analogously can study
the gradual variation of the suboptimal flux point uj, and in
particular of the growth rate ugro

j . Comparative FBA and MOMA

Fig. 2. The suboptimal growth rate calculated using MOMA is plotted vs. the
optimal one obtained with FBA, for central carbon metabolism E. coli genes,
during growth on glucose. On both axes, growth rates are normalized to the
wild-type rate vgro

WT. Most points are labeled with the gene name. The (�) and
(�) signs correspond to genes experimentally verified to be nonessential and
essential, respectively. All points lie below the diagonal because of the sub-
optimal nature of MOMA predictions. A cluster of lethal deletions (bottom
left corner) was correctly predicted by FBA and MOMA equally. Another
cluster of genes (top right corner) corresponds to genes that are not essential.
More interesting are the mutants that do not belong to either of these
clusters. These are the ones for which FBA and MOMA predictions differ
significantly. Three essential genes ( fba, tpia, pfk) that were not predicted
correctly by FBA are predicted correctly with the MOMA calculation. Other
points, such as nuoa and cyoA, despite known to be viable and correctly
predicted by FBA, scored lower in MOMA growth function prediction. How-
ever, none of the genes that were nonessential in FBA, in agreement with
experimental evidence, resulted essential in MOMA.

Fig. 3. (A) A schematic representation of the central carbon metabolism
pathways, inspired by the work of Emmerling et al. (4), in which the numbered
fluxes were measured. For fluxes details, see ref. 4 and the table in SI. The color
code is used for emphasizing pathway usage in Figs. 3B and 4. (B) An example
of flux prediction for one of the E. coli mutants shown in Fig. 2. The mutant
is tpiA, one of the three knockouts predicted correctly by MOMA, but not by
FBA. Each point corresponds to a flux in the metabolic network of the tpiA
knockout, with color code for different pathways as in Fig. 3A. The abscissa
and ordinate correspond to changes in FBA predicted fluxes, and MOMA
predicted fluxes respectively, with respect to wild-type prediction. Only a
limited portion of the results is displayed here. Fluxes are measured in mmol/g
dry weight (DW) per h. The activity of the Pentose Phosphate Pathway, which
would intensify in an optimal FBA distribution, does not increase in the MOMA
prediction.
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examples of robustness analysis can be found in the SI. Inter-
estingly, there are cases in which FBA and MOMA predictions
are identical for a complete knockout, but they differ from each
other for partial deletions.

A second kind of robustness analysis (Fig. 1C) is unique to
MOMA, and addresses the variability of the knockout prediction
as the point w is displaced around the wild-type optimum vWT.
To obtain a map of this variability in the multidimensional f lux
space, it is necessary to perform a systematic analysis of the
effects of displacements along all possible edges departing from
vWT. For this purpose, one can sample the flux space around vWT

by limiting one by one each of the fluxes to a given fraction (e.g.,
90%) of its wild-type FBA value; on each such displacement one
can recalculate the FBA optimum and use the result as the input
w vector for MOMA. This sensitivity analysis can also be used for
studying the dependence of MOMA predictions on the possible
presence of alternative FBA optima (e.g., points a and a� in Fig.
1C). The results of this analysis can be found in the supporting
information.

Results
Prediction of Essential Genes in E. coli Central Carbon Metabolism. We
compared the predicted growth rate values of E. coli central
carbon metabolism enzyme knockouts obtained by FBA and
MOMA. For metabolic reactions carried out by multisubunit
complexes, all members of the complex were deleted; similarly,
for reactions catalyzed by multiple isoenzymes, all corresponding
genes were deleted (13).

The normalized rates of growth obtained with the two meth-
ods are plotted against each other in Fig. 2. All points lie in the
lower triangle of the graph because MOMA necessarily gives
growth rates smaller or equal to the optimal ones predicted by
FBA. In 26 of 47 cases, the two predictions differ by less than 5%.
Of the remaining 21 knockouts, 7 display a difference that
exceeds 50%; among those whose predictions differ most be-
tween the two methods are fructose-1,6-bisphosphatate aldolase
( fba), triosphosphate isomerase (tpiA), and phosphofructo-
kinase (pfk). These were predicted to be nonessential by FBA,
whereas the literature reported that each of them is essential for
growth on glucose (see ref. 13 and references therein). Some flux
change differences between FBA and MOMA predictions for
the tpiA knockout are shown in Fig. 3B, using the pathway color
code of Fig. 3A. On deletion of tpiA, the FBA optimal solution
would tend to redistribute fluxes so as to increase significantly

the use of the pentose phosphate pathway, whereas the MOMA
point would tend to reflect the initially less prominent usage of
this pathway. A number of related flux differences are observed,
including a drastic divergence in the fluxes for the serine pathway
genes serA, serB, and serC. For the wild type, these fluxes amount
to 	14% of the glucose uptake flux; in the FBA prediction for
tpiA knockout the values are reduced to 3%, whereas in the
MOMA prediction they are zero. This finding explains the
corresponding zero final growth rate, because serine is one of
the essential biomass components. A similar situation was ob-
served for deletion of fba and pfkAB.

Comparison with Measured Growth Rates of Competing Insertional
Mutants. The FBA prediction of lethality for metabolic gene
knockouts has been recently compared with the data obtained in
an experiment of competitive growth (20). In this experiment, an
E. coli transposon library was subjected to competitive growth in
rich and minimal media, and 488 genes were classified according
to whether their insertional inactivations negatively affected
growth in the competition. The significance of the FBA predic-
tion was assessed by a �2 test, comparing the observed values of
negatively and nonnegatively selected genes in the different
predicted classes (essential, nonessential, and reduced growth),
with the outcome expected if those genes were randomly dis-
tributed among the classes. The predicted trend of enrichment
was observed (20). We repeated the same test with MOMA, and
found the same trend, now with even higher statistical signifi-
cance. The P value in the �2 test for such enrichment trend was
10�5 in MOMA, as compared with the value of 4 � 10�4 in the
FBA prediction (see Tables 2 and 3, which are published as
supporting information on the PNAS web site).

Comparison with Experimental Flux Measurements of an E. coli
pyruvate kinase (pyk) Knockout. Recent measurements of meta-
bolic f luxes in a pyk knockout (4) allowed us to test the MOMA
predictions directly. Emmerling et al. (4) empirically determined
a collection of intracellular fluxes for E. coli central carbon
metabolism by combining NMR spectroscopy in 13C labeling
experiments, physiological data measurement, and numerical
data fitting. For both the wild-type strain (JM101) and the pyk
mutant (PB25, pykA::kan pykF::cat), two glucose-limited (low
and high concentration), and one nitrogen-limited experiments
were performed, and six resulting sets of fluxes were measured
(see Tables 2 and 3). For a discussion of the experimentally

Table 1. Correlation coefficients and P values for the graphs of Fig. 4

Condition Method

Absolute Relative

�1 P value (a) P value (b) �2 P value (c) P value (d)

C-0.09 WT 0.91 8.2 � 10�8 – – –
KO (FBA) �0.064 6.0 � 10�1

3.3 � 10�3 �0.36 9.0 � 10�1
2.4 � 10�4

KO (MPA) 0.56 7.4 � 10�3 0.48 2.3 � 10�2

C-0.4 WT 0.97 8.1 � 10�12 – –
KO (FBA) 0.77 8.1 � 10�5

2.5 � 10�3 0.36 7.0 � 10�2
1.4 � 10�2

KO (MPA) 0.94 2.6 � 10�9 0.74 2.3 � 10�4

N-0.09 WT 0.78 7.1 � 10�5 – –
KO (FBA) 0.86 3.0 � 10�6

9.0 � 10�2 0.096 3.5 � 10�1
4.6 � 10�2

KO (MPA) 0.73 2.8 � 10�4 0.49 2.0 � 10�2

On different rows the different kinds of predictions are listed for each different condition. The third column reports, for each method, the
correlation coefficient between the experimental flux values, and the ones calculated through FBA or MOMA. The correspondent P values
(a) for testing the hypothesis that the points are uncorrelated are reported in the fourth column. The fifth column contains the P values (b)
for thehypothesis that theFBAandMOMAcorrelationcoefficientsarenot significantlydifferent.Columns6–8areanalogous tocolumns3–5,
whereas the correlations are calculated only for the knockout strain, normalized (by subtraction) to the wild-type fluxes. Bold numbers
represent P values that do not lead to rejection of null hypothesis (with 95% confidence). WT, wild type; KO, knockout.
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observed differences between the knockout and the wild-type
phenotype, see ref. 4.

In the FBA and MOMA models, uptake fluxes for glucose and
nitrogen were matched to the ones experimentally measured.
We first compared the FBA prediction for the wild type with the
corresponding experimental result. The remarkably high, and
statistically significant correlation coefficients confirm the pre-
dictive value of FBA for wild-type E. coli, as seen in Fig. 5 A, D,
and G, which is published as supporting information on the
PNAS web site, and in Table 1. Correlation coefficients range
between 0.78 and 0.97, with P values ranging from 7 � 10�5 to
8 � 10�12. The lowest value is observed for the nitrogen-limited
case. To our knowledge, this is the first time that several
FBA-predicted intracellular fluxes have been compared with
experimental f lux data for an array of different strains and
conditions. Next, we compared the FBA and MOMA predictions
for the pyk mutant with the corresponding experimental results.
Overall, the correlation coefficients were lower than those of the

wild type. Interestingly, however, the MOMA predictions in the
two carbon-limited experiments were significantly more accu-
rate than those of FBA (Fig. 5 B, C, E, and F). The lowest
correlation (�0.064, P value � 6 � 10�1) is found in the FBA
prediction for the mutant under low glucose uptake conditions
(Fig. 4B). MOMA in the same case (Fig. 4C) improves the
correlation to 0.59, with P value � 7.4 � 10�3. When repeating
the correlation analysis for relative flux changes between knock-
out and wild type (ui

j � vi
WT vs. vi

j � vi
WT for flux i in knockout

of gene j) we found that MOMA scores significantly better than
FBA in all three conditions (see Table 1).

A peculiar distribution is observed for fluxes 16 (ppc) and 17
(pck) in Fig. 5 B, C, H, and I. These deviate from the main
diagonal by comparable amounts, suggesting that the discrep-
ancy may be related to the circular topology of their subnetwork
(see Fig. 3A and ref. 4).

The overall higher predictive power of MOMA relative to
FBA in the analysis of the pyk-deleted strain is consistent with

Fig. 4. Comparison of some FBA and MOMA fluxes predictions for pyk knockout with corresponding experimental results from ref. 4. Fluxes are expressed in
percent of the glucose uptake flux. A–C relate to the low concentration carbon limited condition (C-0.08); D–F relate to the high concentration carbon-limited
condition (C-0.4); and G–I relate to the nitrogen-limited condition (N-0.09). For each condition, the FBA optimal prediction for the wild type is compared with
the experimental result for strain JM101 (A, D, and G). The FBA (B, E, and H) and MOMA (C, F, and I) predictions for the pyk mutant are compared with the
experimental results for the knockout strain PB25. Color code for pathways is as in Fig. 3A. The significant improvement in the predictive power for mutants
through MOMA is quantitatively analyzed in Table 1.
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the notion that the assumption of optimality is less appropriate
for knockout strains than for the wild type.

Discussion
Natural selection can be extremely efficient at generating sys-
tems that are optimally adapted to their environment (27–30).
Optimal metabolic adaptation for growth under various envi-
ronmental conditions is especially important for many bacteria
(23). Optimality can be achieved by changing the topology of the
metabolic network and by tuning enzymatic and regulatory
parameters. FBA predicts rate of growth and metabolic f luxes
based on the assumption that growth efficiency has evolved to an
optimal point. The high correlation that we find between FBA
predictions for wild-type E. coli and some recent experimental
f lux measurements (4) confirms earlier evidence that the as-
sumption of optimality is valid in this case. The slightly lower
correlation observed in the nitrogen-limited environment rela-
tive to the carbon-limited cases could indicate that E. coli evolved
toward optimality primarily under carbon-limited conditions.

In contrast to FBA, MOMA does not assume optimality of
growth or of any other metabolic function. Instead, for pertur-
bations such as gene deletions, MOMA approximates metabolic
phenotype by performing distance minimization in flux space.
We demonstrated that MOMA correctly predicts the lethality of
some E. coli gene deletions that FBA failed to recognize, and we
analyzed flux changes possibly crucial in this prediction. It will
be interesting to analyze the flux distributions of other gene
deletions whose points in Fig. 2 either show a discrepancy
between FBA and MOMA predictions (e.g., eno and nuoA), or
deviate from experimental results in all methods (e.g., aceE).
Fig. 2 could serve in general as a map for suggesting maximally
informative sets of experimental knockout flux data. It is likely
that future experiments will produce more data for the intra-
cellular fluxes of several E. coli gene knockouts, and hence more
facts against which MOMA predictions could be tested. As part
of this analysis, a systematic comparison of FBA and MOMA
flux values would provide quantitative constraints on the com-
plex metabolite and enzyme concentration changes expected on
optimization of growth rate. To understand whether a transition
from a suboptimal to an optimal metabolic state requires
Darwinian evolution, or could be accomplished gradually
through gene regulation, high time-resolution experiments are
required, in which fluxes are measured before and after an
enzyme is abruptly inactivated. Interestingly, in line with the
basic hypothesis underlying MOMA, a previous study by Schus-

ter and Holzhütter (31) revealed relative stability of erythrocyte
metabolic f luxes against alterations in enzyme activity, such as
the ones caused by gene mutation. A complete and detailed
kinetic model, as explored for erythrocytes (31, 32), is probably
beyond reach for E. coli at this stage. However, FBA and MOMA
studies of erythrocytes, in parallel to kinetic models, could help
relate the transition between different steady states to enzyme
expression time courses. In addition, f lux balance results and
enzyme expression data can be in principle used to infer kinetic
constants for a whole metabolic network, provided that enough
independent nutrient conditions are considered.

The wild-type point that is used in MOMA does not necessarily
need to be an FBA result. For example, a wild-type point deter-
mined experimentally could be used similarly. In an iterative
process of gene deletions, several MOMA projections could be
applied in a chain, and compared with the MOMA result for
simultaneous deletion of multiple genes. The concept of suboptimal
mutants could be also applied to heterologous gene additions (3),
as well as to the prediction of metabolic flux distributions for
bacteria grown under unnatural environmental conditions (33).
Possible variants of the MOMA approach presented here could
involve alternative flux space metrics. Non-Euclidean distances, in
alternative to Eq. 4, may be considered more suitable to represent-
ing some biological processes. For example, in alternative to the
absolute flux changes currently used in the distance minimization
algorithm, it is possible to use normalized flux changes. Such a
method would remove the dependence of fluxes on constant
factors, and hence may better capture the effects of gene and
metabolite regulation on fluxes in mutant strains.

Among the various possible methods for identifying a single
flux point given an underdetermined set of constraints (11), FBA
employs the biological concept of optimal growth. Other bio-
logically sound assumptions have been proposed for this purpose
(5, 34). MOMA adds to the current set of options a recently
developed technique, based on a simple hypothesis about the
response to metabolic alterations. This approach seems espe-
cially relevant for analyzing gene deletions, but its possible future
extensions could help understand metabolic networks for a
wider range of perturbations.

We are grateful to J. Edwards for sharing with us his FBA experience,
and to B. Palsson and U. Sauer for helpful comments. Many thanks to
N. Reppas, Y. Pilpel, A. Dudley, K. Leptos, P. D’haeseleer, A. Falcovitz-
Segrè, and the whole Lipper Center for invaluable help along manuscript
preparation, and to D. Gamarnik and A. Ergun for QP advice.
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