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The nascent field of systems biology ambitiously pro-

poses to integrate information from large-scale biology

projects to create computational models that are, in

some sense, complete. However, the details of what

would constitute a complete systems-level model of an

organism are far from clear. To provide a framework for

this difficult question it is useful to define a model as a

set of rules that maps a set of inputs (e.g. descriptions

of the cell’s environment) to a set of outputs (e.g. the

concentrations of all its RNAs and proteins). We show

how the properties of a model affect the required exper-

imental sampling and estimate the number of exper-

iments needed to ‘complete’ a particular model. Based

on these estimates, we suggest that the complete

determination of a biological system is a concrete,

achievable goal.

Scientific investigation has long been a technology-limited
endeavor: from Aristotle’s passive observations, to Gali-
leo’s experimental probing, to our own elaborately con-
trived and controlled micro-dissections of nature. New
technologies, in the form of systematic, quantitative,
large-scale experiments with machine-readable outputs
have recently unleashed a torrent of data onto the
biological community, resulting in abundant speculation
about the future of post-genomic biology.

With new tools, naturally come new goals. Classical
molecular methods forced us to focus our gaze on small
numbers of molecules at a time, so we laboriously built up
descriptions in human language, pictures and the
occasional video clip. The overarching goal of biology, if
there was one, was to compile a large number of systems
that are interesting (those that define a general rule, break
one or appeal to us as idiosyncratic human beings) or
applicable (those that contribute to the engineering,
reverse-engineering or modification of a system). The
defining feature of this ‘compilation strategy’ is that it is
more a process than a goal – it specifies no endpoint other
than continual accumulation.

Completion in biology

Long the goal of physicists searching for a ‘theory of
everything’, completion has now become a pervasive idea
in biology, raising the question of where it rightfully
applies and whether it constitutes a new sort of goal for
biological inquiry. The proliferation of the ‘-ome’ suffix

attests to widespread acceptance that biology is rife with
things to be completed, whether it’s the genome, tran-
scriptome or proteome. Genome projects and large-scale
experiments have already yielded important advances in
medicine, biotechnology and basic research. Moreover,
systems level descriptions promise predictions for cell,
organ and organism behavior.

There seem to be two distinct levels of completion. The
first, and conceptually simpler of the two, is ‘parts list
completion’, defined as the fraction of observed to total
predicted parts. This is well underway in the various ‘ome’
projects. The second, more ambitious and less well-defined
level of completion, is at the level of ‘systems biology’, the
study of how the parts work together to form a functioning
biological system [1,2]. There is no clear correspondence
between these two levels of completion – a nearly complete
parts list could lead to an inaccurate description of the
system if the missing parts, essential genes for example,
were crucial for system function.

But how can we know when a systems level description
is complete? Whereas crystallographers can state an Rfree

to describe the extent of agreement between a structural
model and the data from which it was derived, biologists
still lack a coherent framework for deciding the extent to
which a model of a biological system is consistent with
experimental data. Such a framework would be useful for
setting systems biology goals, assessing progress and
identifying areas in need of further investigation.

A model for modeling

We can think of a systems level description as a formal
mathematical construct, or model. Thus, consideration
of the properties of a model is necessary to understand
in what sense a systems level description might be
considered complete. A model can be defined as a set of
rules that maps a set of inputs (see Fig. 1, blue area;
e.g. descriptions of the cell’s environment), to a set of outputs
(see Fig. 1, yellow area; e.g. the concentration of all of its
RNAs). Large-scale experimental sampling of input–output
pairs (Fig. 1, yellow-red dots) such as condition–transcrip-
tome pairs, can be used to derive these rules [3].

To specify a particular model we must decide on its basic
properties (Table 1). First, we must decide on the inputs
and outputs. This choice will depend, for example, on
whether we are interested in predicting transcriptomes
from temperature and pH, or in predicting successive
molecular states. Second, we must decide on the range of
values the inputs can assume and finally, we must decideCorresponding author: George M. Church (church@arep.med.harvard.edu).

Opinion TRENDS in Biotechnology Vol.21 No.6 June 2003 251

http://tibtec.trends.com 0167-7799/03/$ - see front matter q 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0167-7799(03)00113-6

http://www.trends.com


on what level of accuracy and precision we require in our
predictions. For instance, if we are predicting relative
RNA levels, do we need predictions such as, ‘upregulation
by a factor of 3.3 ^0.1’ or would a predicted factor of 3 ^1
allow us to reach the same biological conclusions? Once we
have made these three decisions, we must choose a rule
type that will allow us to realize the model, that is, one that
will allow us to map our chosen input space to our chosen
output space with the desired level of accuracy and
precision.

From these basic model properties we can determine
how many measurements, at least to the order of
magnitude, it would take to populate the space of all
possible inputs (e.g. conditions) with enough measured
outputs (e.g. transcriptomes, proteomes) to make

prediction feasible. In other words, we can establish how
many measurements are needed to adequately sample
input space to allow the rule parameters to be determined.
A similar issue has been addressed in the field of
supervised learning by Probably Approximately Correct
(PAC) theory [4], which gives the probability that a given
number of measurements will generate rules of a given
accuracy. Of course, once a model has been generated, its
actual accuracy must be assessed by additional exper-
iments that were not used to infer the rules.

We can readily determine how the properties of a model
affect the number of measurements required to derive its
rules (Table 1). A larger number of inputs and outputs will
require more individual measurements per input–output
pair, that is, per sample (Row I). A larger range of input
values might require a greater number of samples (Row
II). A higher desired accuracy generally will require more
samples and increased accuracy per individual measure-
ment (Row III). Finally, a more complex rule type will
probably require more samples (Row IV). For example, if
nearby points in input space do not map to nearby points in
output space then we must sample the space more densely.
It should be noted that because the output space is
simply a function of the input space we can focus
exclusively on the properties of the input space and
rule type when considering the required experimental
sampling density.

Model types

The choice of a model type is a crucial part of any
completion effort because it determines the type of rules
that need to be discovered and the number and type of

Fig. 1. A general scheme for modeling as an exercise in mapping input space (blue

area; for example all possible environments in which a cell can live), to output

space (yellow area; e.g. all possible cellular responses). The yellow-red dot pairs

represent measured input–output pairs, which, in large numbers, can be used to

derive rules (arrows) to predict outputs for novel inputs. Examples of possible

inputs and outputs are given below.
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Input
External environment
External environment
Cell type
Cell state at time t

Output
Transcriptome, proteome, etc.
Molecular fluxes, growth rate
Transcriptome, proteome, etc.
Cell state at time t + 1

Input space Output space
Rules

Table 1

Property Minimizing (maximizing) case Minimizing case Maximizing case

I. Number of

inputs and outputs

Low (high) level of

model detail, less (more)

comprehensive model

II. Range of inputs Can live in few (many)

environments

III. Accuracy

and precision

Predictions useful at low

(only at high) level of accuracy

IV. Rule type Similar inputs give similar

(different) outputs, requires

simple (complex) rule types.

Four model properties that contribute to the number of measurements needed for complete determination by either influencing the effective size of the spaces to be sampled,

or the necessary sampling density. Cases that maximize and minimize measurements are given, with corresponding schematic representations based on Figure 1. Row I, with

more inputs and/or outputs each sampling of an input–output pair requires more individual measurements, represented by the depth of the spaces. Row II, the size of the input

space contracts or expands depending on the range of the input values. Row III, larger input-output dots in the minimizing case indicate that each measurement or prediction

effectively covers more input and/or output space because, with low accuracy requirements, nearby points can be considered equivalent. Row IV, when nearby points in input

space map to nearby points in output space, simpler rules with fewer parameters will need to be determined, requiring fewer measurements. When nearby points in input

space do not map to nearby points in output space, the model will require more complex rules with more parameters, requiring more measurements.
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measurements that need to be made. There are a host of
issues, discussed in several reviews [5–8], which must be
considered when planning a modeling strategy. Table 2
gives examples of model types organized by the level of
detail of their predictions, that is, their outputs. On one
end of the spectrum we can imagine atomic level, or even
subatomic level descriptions of a complete cell, which set
an upper bound on detail. Towards the lower end of the
detail spectrum we have Boolean models, which consist of
logical statements such as, ‘if the lac repressor is bound to
the operator then the lac operon is off ’.

As we move from more to less detailed models we make
certain trade-offs. The more detailed models make fewer
assumptions and are therefore potentially more accurate
for the systems they describe. However, they tend to be
more problematic with regard to computability and
measurement, and are therefore difficult to apply to
large systems. Furthermore, computational predictions
at too high a level of detail might not be useful for human
understanding of the biological phenomena under study.
As we enhance our ability to make large numbers of
measurements, we might be able to generate enough
input–output pairs to allow the complete determination of
more and more detailed model types.

Practical application

Now let’s consider specific examples of projects we might
wish to complete. A useful model for many biological
purposes is one in which the resulting expression level of
each gene can be predicted using the input levels of all of
the genes. Such a model would predict the effects of
overexpression, genetic knockouts, or even various
environmental stimuli, provided that the effects of those
stimuli on individual genes are known. In fact, historically,
much of genetic research has been devoted to finding
small parts of such a model. Specifically, we consider a
discrete transcriptional network model that maps all
N genes as inputs to all N genes as outputs, in which
the genes can take on three levels of expression (low,
medium and high) and each gene has, at most, K direct
regulators (Table 3). We consider this model for a range
of organisms: Mycoplasma pneumoniae, Escherichia coli
and Homo sapiens.

A very simple cell, such as M. pneumoniae, lives in an
exquisitely controlled environment within its human host
and has a minimal number of genes (low N) that seem to
lack any transcriptional regulation (low K) [9]. At an
intermediate level is E. coli, which can live in many
environments and consequently has more genes and
requires more genetic regulation (intermediate N and
K). At the upper extreme are humans, which have a large
number of genes and highly complex regulatory mechan-
isms. Additionally, as multicellular organisms, humans
have abundant intercellular communication and a large
number of cell types, each potentially with its own set of
transcriptional states.

In Table 3, we use formulae given by Krupa [10] to
estimate the upper and lower bounds for the number of
microarray experiments needed to complete the discrete
transcriptional network model described above. The lower
bound is related to the amount of information needed to
specify the network structure and mapping functions. It
assumes that each microarray experiment is maximally
informative and independent from previous measure-
ments and also assumes perfectly efficient use of exper-
imental measurements to determine model parameters.
These assumptions make it likely that this estimate is far
below the actual number of measurements needed. The
upper bound reflects the number of random experiments
needed to complete the model with a 99% probability of

Table 3

Organism N K Estimated number of

microarrays

Lower bound Upper bound

M. pneumoniae 688 1 10 80

E. coli 4,288 3 50 40 000

H. sapiens 50 000 4 100 700 000

Upper and lower bounds on the number of microarrays (or equivalent transcrip-

tome-wide experiments) to complete discrete transcriptional network models for

various organisms, calculated according to Krupa [10]. N represents the number of

nodes (genes in this example). K represents the maximum number of regulatory

connections per node. The expression level of each gene is categorized as high,

medium, or low ðj ¼ 3Þ: The lower bound (information-theoretic) is given by jK þ

K logjðN=K Þ: The upper bound is given by j2K ð2K ðlnN þ lnjÞ þ lnC Þ; where the

measurements fail to determine the model with probability 1/C. Here we set 1/C

equal to 0.01. It is important to note that the upper bound estimate increases

exponentially with K, making it the dominant parameter.

Table 2

Model Scope Applicable Rules Model Outputs # of Outputs Examples of Outputs

Atomic Cell c at time t Physics Atomic positions and

momentums

109–1017 12C position and

momentum

Molecular Cell c at time t Chemistry Small molecule positions

and momentums

108–1016 Glucose position

and momentum

Biomolecular

(discrete)

Cell c at time t Molecular mechanics Macromolecule positions

and momentums

105–1012 Hexokinase position

and momentum

Biomolecular

(statistical)

Biochemically

equivalent cells

Chemical kinetics and

thermodynamics described

by differential equations

Macromolecule concentrations,

compartments

103–106 Hexokinase

concentration in

cytoplasm

Biomolecular

(steady-state)

Genetically equivalent cells,

similar growth conditions,

steady state

Flux balance, physical

and chemical constraints

Molecular fluxes 102–104 Flux of glucose

to glucose-6P

Boolean Genetically equivalent cells Genetic and metabolic

‘circuits’

Regulons, pathways 102–104 Glycolysis ‘on’,

gluconeogenesis ‘off’

Examples of hypothetical levels at which a systems biology project can be completed, listed from most detailed (top) to least (bottom). The number of outputs is estimated for

single cells. The details of these calculations can be found at http://arep.med.harvard.edu/completion. We might soon be able to collect complete datasets for some classes of

biomolecules at the level of macromolecular concentrations.
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success and is probably a more realistic estimate. It is
important to note that the upper bound estimate grows
rapidly (exponentially) with the maximum number of
regulatory connections (K) per gene. Fortunately, genes
tend to have a low number of regulatory inputs, making an
estimate based on a low K reasonable. It is also encoura-
ging to note that the upper bound estimate grows slowly
(logarithmically) with the number of genes (N), making
determination feasible even for large genetic networks.
Furthermore, if the structure of the network is already
known, far fewer measurements will be needed.

The upper bound of 80 transcriptome experiments for
M. pneumoniae is already feasible with current technol-
ogy. Although 40 000 microarrays (or equivalent tran-
scriptome-wide experiments) for E. coli and 700 000 for
human might seem daunting, we should keep in mind that
the initial version of the human genome required
,30–40 million sequencing reads [11,12] – a number that
was not practical at the time the project was first proposed.

There are other methods for inferring rules directly
from large-scale datasets and for estimating the number of
measurements necessary for a given level of accuracy
[3,13,14]. Additionally, current microbial models based on
flux balance analysis have shown considerable progress
towards a complete description of metabolism, with
mappings from culture conditions and genotype (input)
to growth phenotype (output) that reach accuracies .90%
(106/116) [15]. Models of this type have even been shown to
be predictive of the biological evolution of metabolic fluxes
[16]. Additional refinements promise to further increase
their accuracy [17].

Conclusion

With the advent of large-scale projects, synthesis has
become an important goal in biology. Completion of a large
number of genome projects and the pursued completion of
other ‘ome’ projects raises the question of what it might
mean to complete a systems biology project and what
might be gained from such an effort. We have found it
useful to consider this question within a framework for
modeling and show how the number of experiments
necessary can be related to the model properties. Further-
more, we present an example of a discrete transcriptional

network model and estimate the number of experiments
necessary for its completion. When viewed through the
framework of modeling, the complete determination of a
biological system becomes a concrete, achievable goal.
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