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An Interpretable Deep Embedding Model for Few
and Imbalanced Biomedical Data
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Abstract—In healthcare, training examples are usually hard to
obtain (e.g., cases of a rare disease), or the cost of labelling data
is high. With a large number of features (p) be measured in a
relatively small number of samples (N ), the “big p, small N”
problem is an important subject in healthcare studies, especially
on the genomic data. Another major challenge of effectively
analyzing medical data is the skewed class distribution caused
by the imbalance between different class labels. In addition,
feature importance and interpretability play a crucial role in the
success of solving medical problems. Therefore, in this paper,
we present an interpretable deep embedding model (IDEM) to
classify new data having seen only a few training examples
with highly skewed class distribution. IDEM model consists of
a feature attention layer to learn the informative features, a
feature embedding layer to directly deal with both numerical
and categorical features, a siamese network with contrastive loss
to compare the similarity between learned embeddings of two
input samples. Experiments on both synthetic data and real-
world medical data demonstrate that our IDEM model has better
generalization power than conventional approaches with few and
imbalanced training medical samples, and it is able to identify
which features contribute to the classifier in distinguishing case
and control.

Index Terms—Interpretable AI, Deep Embedding Model, Few
Medical Data, Imbalanced Medical Data, Siamese Network

I. INTRODUCTION

IN the era of big data, data is involving all aspects of
human life, including biology and medicine. Deep learn-

ing techniques provide effective paradigms to build end-to-
end systems from complex and high-dimensional biomedical
data, including electronic health records, omics and medical
imaging [1]. However, differ from humans that can recognize
new object classes from very few instances, most deep learning
techniques require thousands of samples to achieve good
performance. Thus, deep learning succeeds in data-intensive
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applications, but it lacks the ability of learning from a limited
number of samples. Since the cost of labelling medical data is
high [2], there are usually only few samples are available in
healthcare [3]. Apart from few samples issue, the registered
medical data are often highly imbalanced because cases of
a rare disease are usually hard to obtain, resulting in highly
skewed class distribution problem. Conventional classifiers
typically perform poorly in imbalanced data, as they implicitly
give the same attention to the majority class and the minority
class. However, for medical related data analytics, accurately
detecting minority class is of great importance since they
correspond to high-impact events [4].

In addition, feature importance and interpretability of deep
learning models play a crucial role in the success of solving
real problems in healthcare. Medical datasets usually consist of
a large number of disease markers, while some disease markers
are not helpful and sometimes even have negative effects for
clinical analysis. Nevertheless, most deep learning models are
learned as a black box due to its high inherent complexity.
Although deep learning demonstrates high performance and
time-efficiency, researchers are not sure exactly which features
contribute to the model used to classify diagnoses. The way
those deep learning algorithms arrive at their conclusions
needs to be understandable and interpretable. Moreover, deep
learning algorithms tend to overweigh peripheral features
at the expense of critical ones when they try to take all
factors into account, resulting in inapplicability or overfitting
problems on high-dimensional genomic data with only few
samples. Therefore, integrating feature selection is necessary
as it enables to remove those unimportant disease markers and
select contributory ones.

Motivated by the above observations, our research mainly
aims to solve the following challenges:
• How to build an interpretable deep learning model that

can explain its decision-making to physicians by iden-
tifying relevant disease markers and facilitating clinical
translation, is one of the challenges.

• Medical data are usually a mix of numerical and categori-
cal features, which pose a challenge for directly applying
classifiers as they can only handle numerical inputs by
design. How to learn deep embedding representations
from heterogeneous medical data is another challenge.

• Deep learning succeeds in data-intensive applications, but
it lacks the ability of learning from a limited number of
samples or imbalanced data. How to train a deep learning
model using few samples on the imbalanced data is also
challenging.
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To tackle the above challenges, in this paper, we propose
an interpretable deep embedding model (IDEM) for few and
imbalanced medical data analysis. The main contributions of
our work are summarised as follows:
• A new interpretable deep embedding model is devised

that integrates feature attention, categorical feature em-
bedding and trains on few samples and imbalanced data.
The proposed model is able to learn which features are
informative in a deep neural network architecture.

• We formulate the classification problem as a verification
task. IDEM learns deep embeddings of inputs, and then
an identity network is used and a distance function is
learned between their embeddings to output their simi-
larity. This is done by applying cosine distance on the
output embeddings and adding one fully connected layer
to learn the weighted distance.

• The proposed model is able to explain its decision-
making to physicians by identifying relevant clinical fea-
tures and showing how much do these features contribute
on diagnosis, facilitating clinical translation. By providing
feedback on the importance of various clinical features
in performing differential diagnosis, our model have the
potential to improve clinical practicality.

We also evaluate our proposed algorithm on one synthetic
data and three real medical datasets, and compare it with the
state-of-the-art approaches for few and imbalanced medical
data analysis. The experimental results demonstrate the effec-
tiveness of the proposed model.

The remainder of the paper is organized as follows. Section
II discusses related work. Section III presents the proposed
IDEM model. Section IV reports experimental results. We
conclude the paper in Section V.

II. RELATED WORK

In this section, we review existing research related to
our work in the following areas: feature selection, feature
embedding, learning from few samples and imbalanced data.

Feature selection. Feature selection has been widely used
in healthcare to map the original feature space into a lower
dimensional one. One research direction of feature extraction
in healthcare is using principal component analysis (PCA)
and independent component analysis (ICA) to project disease
markers to another space [5]. However, the features after
projection are totally new and different with original features.
Although a lower dimension of features is obtained, it is hard
to interpret what is the meaning of the new features by human.
On the other hand, several statistical theories (e.g., Chi-Square)
[6] and conventional classifiers (e.g., Logistic Regression) have
been used to select significant features having higher score.
These methods can be categorized as three classes [7]: filter,
wrapper and embedded methods. Wrapper methods measure
the significance of feature subsets based on the classifier per-
formance. In contrast, the filter methods consider the intrinsic
properties of the features (i.e., the “relevance” of the features)
without incorporating any specified learning algorithm. The
embedded methods select features by optimizing the objective
function or performance of a learning algorithm.

However, all of the above methods select features under
the assumption of linear relationship between the features and
the target variable. It is important to take into account the
non-linear dependency between the features and the target
variable in order to select more informative features and
improve the classification performance. Although deep learn-
ing combines lower-level representations to yield higher-level
representations of features and model complex medical data
with nonlinear structures for prediction and classification, it
does not have the ability to select features directly.

Feature embedding. In the literature, many conventional
deep learning models require the input to be numerical, so they
convert categorical features to numerical using preprocessing,
such as mapping a category to the conditional probability of a
particular label [8] or one-hot encoding [9] - a method where
the categorical variable is broken into as many features as the
unique number of categories for that feature and for every row,
1 is assigned for the feature representing that row’s category
and rest of the features are marked 0. Embedding has also
being used in natural language processing (NLP) for word
representation. For example, a representation of each word is
learned and then is fed into a neural network to make the
prediction [10]. In addition to NLP, [11] proposes a data em-
bedding method for time-related feature in the transportation
field. The key idea is to embed the data into a 2-dimensional
space before feature selection, and then a data-driven ensemble
learning approach is applied for prediction. In the medical
field, [12] presents a categorical feature embedding method to
encode categorical features into vectors for autism diagnosis
prediction.

However, there are a lot of issues with those methods. For
categories with lots of unique features, we get a lot of sparse
data using one-hot encoding. And they all require a large
amount data to train the model for learning the embeddings.

Learning from few samples and imbalanced data. To learn
from only few examples of each class, there are three major
works in computer vision field (i.e., Face Recognition): 1)
Matching Networks [13], that first embed a high dimensional
sample into a low dimensional space and then perform a
generalised form of nearest-neighbours classification. One of
the popular matching networks is siamese networks that use a
pairwise verification loss to perform metric learning and then
in a separate phase use the learnt metric space to perform
nearest-neighbours classification; 2) Prototypical Networks
[14] that aim to learn prototypical representations; 3) Model-
agnostic meta-learning [15] provides a good initialization of
a model’s parameters to achieve an optimal fast learning on
a new task and avoids overfitting that may happen when
using small data. There are two major methods to deal with
imbalanced data [16, 4]: algorithm-based and sampling-based
methods. For example, [17] combines cost-sensitive method
with neural network architecture to deal with imbalanced
medical data. [18, 19] introduce SMOTE as a resampling
method to increase the number of samples in the minority
class. However, we have applied the abovementioned methods
on the small imbalanced medical data and experimentally
concluded that none of these methods perform well to deal
with imbalanced medical data with few samples.
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Fig. 1. The overall framework of the proposed model. An input pair is fed into the network. The input variables are first passed through the feature attention
and feature embedding layer where feature attention learns feature score of each feature and feature embedding embeds categorical features and maps numerical
features. The outputs from feature attention and feature embedding are concatenated by element-wise product, and then be fed into a neural network with
several dense layers. The neural network learns their embeddings into constant vectors z(1) and z(2) that their similarity can be identified via a distance layer
and contrastive loss, followed by an output layer where outputs the similarity of the two inputs.

III. METHODS

A. Problem definition

Given a data set D = {Dtrain,Dtest} for a supervised
learning task, Dtrain = {(x(i), y(i))}Ii=1 is a labelled training
set with a small number I and skewed y distribution, and
Dtest = {xtest} is the test set. We aim to learn a hypothesis
h̄ on the training set Dtrain, and evaluate the hypothesis on the
test set. Each training example x(i) ∈ X ⊆ <d is represented
by the learned embeddings z(i) ∈ Z ⊆ <m, and then making
prediction based on the similarity of the learned embeddings.
The performance is measured by the loss function L between
prediction ŷ = h̄(x;W ) and true label y.

B. Model architecture

The architecture of our model is shown in Figure 1. Our
model consists of three components: feature attention, feature
embedding, and siamese networks. The feature attention makes
the deep learning model explainable because it is able to
learn feature weights and enables to select the most infor-
mative features from a large amount of input variables. The
feature embedding is a compellingly simple, yet effective
neural network architecture to make the model applicable
to heterogeneous healthcare data, thus, the model is capable
of directly handling both numerical and categorical features.
The feature attention and feature embedding are in the same
layer of neural networks, and their outputs are element-wise
multiplied as an input to the next layer. The siamese network
consists of two identical fully connected nets that take the
outputs from feature attention and feature embedding after
element-wise multiplication. Two inputs are fed into the two
identical networks to learn their representations during training

and test phases. After that, the siamese networks compare their
representation vectors to output their similarity.

C. Feature attention

While deep learning has achieved great success for classifi-
cation and prediction tasks, most deep learning models are not
able to output which features are informative and significant
to classifiers. Since the input variables may contain many
redundant, noisy, or irrelevant features, not all of the variables
contribute to the performance of the predictive models we
build. In our proposed model, we add a feature attention layer
such that helps to identify a subset of relevant input variables
in a dataset.

Let x(i) ∈ <d denotes the feature vector of object i, and
Wfa ∈ <d be the feature attention (weight), such that,

Wfa = [w1
fa, w

2
fa, · · · , wd

fa],

d∑

j=1

wj
fa = 1, wj

fa ≥ 0. (1)

The feature attention layer is a one-by-one connection to
the input variables. It is the element-wise product between the
feature attentions Wfa and the feature vector x(i) of object i.
Then, we have the feature attention layer as follows:

hfa0 = Wfa � x(i) = [w1
fax

(i)
1 , w2

fax
(i)
2 , · · · , wd

fax
(i)
d ] (2)

where � is element-wise multiplication operator.

D. Feature embedding

One of the challenges to analyze healthcare data is that the
data typically contains both continuous numerical variables
and categorical variables. Dealing with continuous numeric
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data is often easier than categorical data given that it can be
fed into most of deep learning models after normalization.
However, naively applying deep learning algorithms with
integer representation for categorical variables does not work
well. Categorical variables are known to hide and mask lots of
interesting information in a dataset and they might even be the
most important variables in a model. To address this problem,
we introduce a feature embedding layer, capable of naturally
handling both categorical and numerical features.

Given a set of inputs {x(i), y(i)}Ii=1 containing I instances.
Each feature vector is a concatenation of numerical features
x
(i)
U and categorical features x(i)C . Our model maps the cat-

egorical variables into numerical hidden representations in
Euclidean spaces, which is to build a vector embedding to
every category type. The new representation will be concate-
nated with the numerical part and then element-wise multiplies
feature attention part to be fed into the remaining neural
network.

Suppose a categorical variable x(i)Ck
has p categories, and let

hyperparameter η be a user defined dimension for embedding
representation. We initialise an embedding matrix

EC =


[x

(i)
Ck

]11 [x
(i)
Ck

]21 · · · [x
(i)
Ck

]η1
[x

(i)
Ck

]12 [x
(i)
Ck

]22 · · · [x
(i)
Ck

]η2
...

. . .
...

[x
(i)
Ck

]1p [x
(i)
Ck

]2p · · · [x
(i)
Ck

]ηp

 ∈ <p×η (3)

where each row in the embedding matrix denotes the embed-
ding of each category for this categorical feature, i.e., [x

(i)
Ck

]j

is the jth category of the kth categorical feature x(i)Ck
.

Then we add an embedding layer in the neural network to
do a lookup for a given value from the embedding matrix
EC , which returns a numerical embedding for each category.
The new representation along with the numerical variables x(i)U

would then be fed into the next layer in the neural networks.
Note that, this part is only for categorical features embedding
and the embedding dimension is η while the overall embedding
z(i) of an input x(i) is from the network in Section III-E with
embedding dimension m.

E. Learning from few and imbalanced data

Deep neural networks have been successfully used for
classification tasks on large datasets by minimizing a cross-
entropy loss function. However, there are many problems (i.e.,
overfitting) if we train a neural network classifier based on
cross-entropy on a small or an imbalanced dataset, because
there are tens of thousands parameters need to be optimized.
Therefore, in this paper, we use metric learning which is a
non-parametric method to calculate the distance between two
samples based on their learned embeddings.

We use a siamese network to learn from few and imbalanced
data. The siamese network consists of two channels where
use two identical dense networks. The input to the siamese
networks should be in pairs, along with their labels, stating
whether the input pairs are a genuine pair (same) or an
opposite pair (different). During training, the input pairs are
constructed by the way of combining two samples from the

training data. Then input pairs are first fed into the first
layer that consists of feature attention and feature embedding.
Outputs from feature attention and feature embedding are
concatenated by element-wise multiplication operation, and
then be fed into several dense layers with ReLU non-linear
activation for embedding learning. The embedding learning
embeds x(i) ∈ X ⊆ <d to a smaller embedding space
z(i) ∈ Z ⊆ <m, where the similar and dissimilar pairs are able
to compute and identify. We then feed these embeddings to
an energy function (i.e., Euclidean distance, Cosine similarity,
and Manhattan distance) which will give us a similarity
between the two inputs. The value from the energy function
will be smaller if the two inputs are similar (i.e., they are from
the same class). Otherwise, the value will be larger.

For example, let’s say we have two inputs x(1) and x(2).
As shown in Figure 1, we feed x(1) to network A and x(2) to
network B. The role of both of these networks is to generate
embeddings (feature vectors) of the inputs. We can use any
network architecture (i.e., CNN or NN) that is able to give
us embeddings. Then we will feed these embeddings to the
distance layer which tells us how similar the two inputs are.
For the distance layer, we can use any similarity measure such
as Euclidean distance, Cosine similarity, Manhattan distance,
and so on. Since networks A and B are identical (share weights
and same architecture), the learned embeddings z(1) and z(2)

should be similar if the two inputs are from the same class
and dissimilar if they are from different classes.

F. Loss function

Now the problem turns to how to train the proposed
network. Let z(i), z(j) ∈ Z be a pair of learned embeddings of
inputs x(i) and x(j). We use Ψ = 1 when the inputs x(i) and
x(j) are from the same class, and Ψ = 0 otherwise. A siamese
network is trained with the learned embeddings being fed to
a contrastive loss. We impose feature attention by introducing
a regularization term in a loss function. Thus, our objective
function is as follows:

L(x(i),x(j),Ψ) =
1

2
(1− t)(D(x(i), x(j)))2+

1

2
Ψ(max{0, ε−D(x(i), x(j))})2 + λ‖Wfa

d
‖

(4)

where λ ∈ [0, 1] is a user-specified parameter coefficient, and
d is a number of variables in a dataset. Wfa is the weights
of feature attention layer. D(x(i), x(j)) is the parameterized
cosine similarity between the learned embeddings of z(i) and
z(j). That is

D(x(i), x(j)) =
z(i)z(j)

||z(i)|| · ||z(j)||
(5)

Note that D(x(i), x(j)) could be any similarity measure such
as Euclidean distance, Cosine similarity, and so on. But the
reason why we use Cosine similarity instead of Euclidean
distance in this paper is to make our model also work well
to the difference in length of the learned embeddings. So the
loss will decrease D(x(i), x(j)) when the samples are from the
same class, on the other hand, when they are dissimilar it will
try to increase D(x(i), x(j)) with a certain margin ε(ε > 0).
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TABLE I
DATASETS USED IN THE STUDY

Data Sets # of training samples (positive / negative) # of test samples (positive / negative)

MIMIC-III AKI Data 887 / 53 591 / 35

eICU AKI Data 1335 / 312 667 / 156

Framingham Heart Study 1078 / 193 359 / 64

ε is a margin value which is greater than 0. The term margin
is used to hold the constraint, that is, when two input values
are dissimilar and if their distance is beyond this margin, then
they do not incur a loss. max() is a function denoting the
bigger value between 0 and ε−D(x(i), x(j)).
L(x(i), x(j),Ψ) can be minimized with gradient descent

optimization, and the standard back-propagation algorithm can
be applied.

IV. RESULTS

We compare our model with four baselines that used for few
or imbalanced data analysis on one synthetic data and three
real-world medical data.

A. Simulations

To show the ability of the proposed model is able to
detect key and noisy features, we generate a synthetic data
with Gaussian noise as simulation following a method in
[20]. We sampled 1500 data points from each of the two 2-
dimensional Gaussian distributions with the same covariance
matrix

∑
= diag(1, 1). The true signal is set by two different

mean values µ = (0, 0) and (0, 5). Then, we added 40-
dimensional Gaussian noise with mean µ = (2.5, 2.5, · · · 2.5)
and covariance

∑
= diag(10, 10, · · · , 10), resulting each

point has 42 dimensions and the first two are the true label
while the rest being random noise. Figures 2 and 3 illustrate
the data points with the true signal (the first two dimensions)
and the ”corrupted” signal (using tSNE for the 42-dimensional
vector) respectively.

We randomly select 70% data to train our model IDEM
and a Random Forest classifier, and compare the learned
feature weights from the two models. Figure 4 demonstrates
the learned weights by IDEM and Random Forest (RF) for
the 42-dimensional input features, where we can observe that
IDEM model learns the weights of the true signal are much
higher than those in the noise. However, RF is not able to
distinguish the true signal and noise very well. Both models are
able to output the score of each feature, which is to distinguish
the feature importance. However, the ability of distinguishing
feature importance is subject to the performance of classifica-
tion. Since IDEM outperforms RF in terms of all criteria (e.g.,
Specificity and Sensitivity) on the imbalanced datasets, IDEM
has superior ability of identifying real importance of features.

B. Datasets

We carry out a set of experiments to verify the effectiveness
of the proposed framework on three publicly available real

imbalanced medical datasets with only few samples. Table I
shows the number of positive and negative samples in both
training and test sets.
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Fig. 2. Clustering data points gen-
erated by simulations.
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Fig. 4. Learned feature weights by IDEM and RF. The red dots denote the
true signals and the blue dots corresponding to noise.

• MIMIC-III AKI Data. This is a publically available
Electronic Health Record (EHR) data sets and Kidney
Disease Improving Global Outcomes (KDIGO) criterion
to definite Acute Kidney Injury (AKI). The aim is to
precisely predict whether a certain patient will suffer
from AKI after admission in ICU according to the last
measurements of the 16 blood gas and demographic
features.

• eICU AKI Data. This is another publically available
EHR data for kidney disease. This dataset is also used
for AKI prediction, and it is from the eICU database.
There are more samples available in this dataset than in
the MIMIC-III AKI data.

• Framingham Heart Study Data. This dataset is from
an ongoing cardiovascular study on residents of the town
of Framingham in Massachusetts, and it is publically
available on the Kaggle website. The classification goal
is to predict whether the patient has 10-year risk of future
coronary heart disease (CHD). The dataset provides the
patients’ information that includes 15 attributes.
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C. Benchmark methods

Since our method is efficient to learn from few and im-
balanced data, we compare our model with baselines that are
used for few-shot learning and imbalanced data analysis.

• Siamese Neural Network with Feature Attention
(SNN-FA). Siamese Neural Network [21] is one of the
most prominent deep neural networks for few-shot learn-
ing. To evaluate the effectiveness of using embedding
for categorical feature in the first layer of the proposed
architecture, we compare the siamese neural network
by adding only feature attention (without the feature
embedding) in the first layer as a baseline.

• K-Nearest Neighbours (KNN) [22] is the simplest way
of doing classification. KNN calculates the Euclidean
distance of the test sample x̂ from each training example
and picks the closest one as follows:

C(x̂) = arg min
c∈Dtrain

||x̂− xc|| (6)

where xc is the training example in category c.
• Cost-Sensitive Deep Neural Network (CSDNN) [17]

considers costs of misclassified instances that vary by
type of category whereas traditional classification models
assume that all misclassification errors carry the same
cost. CSDNN does not directly create a balanced class
distribution. Instead, it highlights the imbalanced learning
problem using a cost matrix that describes the cost
of misclassification in a particular scenario. The cost-
sensitive loss function is

LCS = y ∗ (cFN ∗ log(ŷ) + cTP ∗ log(1− ŷ))+

(1− y) ∗ (cFP ∗ log(1− ŷ) + cTN ∗ log(ŷ))
(7)

where cFN , cTP , cFP , cTN represent the costs of false
negative, true positive, false positive, and true negative.
We use [2,1,18,1], [2,1,6,1], and [2,1,6,1] for MIMIC-III,
eICU, and Framingham Heart data, respectively.

• The Synthetic Minority Oversampling Technique
(SMOTE) [19] is the most widely used algorithm to
balance healthcare data. SMOTE is a more advanced
oversampling method which interpolates among existing
minority class examples and generates new minority class
samples. After the over-sampling process, a Random
Forest classifier is applied to classify the new balanced
dataset.

• RUSBoost [23] is a variant of AdaBoost to handle
the imbalance problem. AdaBoost is one of Boosting
algorithms, which trains several weak classifiers using
a same dataset. RUSBoost uses random under-sampling
integrated in the learning of AdaBoost. During learning,
the problem of class balancing is alleviated by random
under-sampling the sample at each iteration of the boost-
ing algorithm.

• Cost-Sensitive SVM (CS SVM) [24] is a modification
of SVM that weighs the margin proportional to the class
importance.

D. Performance evaluation criteria

Appropriate evaluation criteria are crucial for assessing the
performance. In the case of imbalanced classes, accuracy
metric can be misguiding, because high metric does not show
prediction capacity for the minority class. As the minority
class may bias the decision boundary and has little impact
on accuracy, we use evaluation criteria include Specificity,
Sensitivity, F1 Score, ROC (Receiver Operating Characteristic)
curve, and the positive predicted value (PPV) and negative
predicted value (NPV) based on confusion matrix.

In the context of imbalanced classification, sensitivity is the
percentage of correctly classified minority instances. In con-
trast, specificity denotes the percentage of correctly classified
majority instances. PPV denotes the percentage of relevant
objects that are identified for retrieval. F1 score represents a
harmonic mean between specificity and PPV.

E. Results and discussion

Results: Table II presents the performance of the proposed
model IDEM and the baselines on the various datasets. In
comparison to the state-of-the-art baselines on the test data, we
observe that our model (IDEM) performs better than baselines
in terms of Specificity, Sensitivity, PPV, NPV and F1 Score.
For example, all the methods have relatively high specificity
on the Framingham Heart Study Data. But for the SMOTE,
KNN and CSDNN classifiers, the sensitivity values are very
pool (25.2%, 24.1% and 31.4%). Obviously, the sensitivity
and PPV are significantly improved by using the proposed
framework. Also, the proposed method achieves superb F1
Score on the three datasets compared to other baselines. The
sensitivity and F1 Score of IDEM are 2 to 7 times higher than
using SMOTE, KNN and CSDNN. As we can observe from
the results, under the same false positive rate, we are able to
predict kidney or heart disease with high true positive rate,
which is much better than that of in baselines.

To further validate the interpretability of IDEM, we add
two new variables into the MIMIC-III AKI data. The first
feature Y correlated is highly correlated to the target and
the second X random is a random noise feature generated
from a normal distribution. From Figure 5, our model detects
the highly correlated feature with the highest score while gives
the noisy feature a very low score.

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
Feature Importance

Y_correlated
bmi_group

age
mean_weight

height
gender

valuenum
X_random

Fig. 5. Feature importance analysis for the MIMIC-III AKI data.
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TABLE II
EXPERIMENTAL RESULTS

Datasets Methods Specificity Sensitivity PPV NPV F1 Score AUC

MIMIC-III AKI

SMOTE 0.973 0.122 0.657 0.721 0.206 0.714

RUSBoost 0.958 0.155 0.349 0.887 0.860 0.668

CS SVM 0.882 0.387 0.164 0.960 0.850 0.655

KNN 0.948 0.375 0.086 0.991 0.139 0.670

CSDNN 0.963 0.091 0.571 0.660 0.156 0.616

SNN-FA 0.987 0.900 0.771 0.994 0.831 0.883

IDEM 0.992 0.938 0.857 0.997 0.896 0.927

eICU AKI

SMOTE 0.847 0.239 0.539 0.598 0.331 0.575

RUSBoost 0.834 0.235 0.429 0.673 0.630 0.571

CS SVM 0.846 0.269 0.290 0.832 0.649 0.567

KNN 0.812 0.205 0.103 0.907 0.137 0.572

CSDNN 0.857 0.228 0.660 0.477 0.339 0.564

SNN-FA 0.863 0.515 0.587 0.846 0.633 0.657

IDEM 0.869 0.536 0.611 0.857 0.652 0.694

Framingham Heart Study

SMOTE 0.896 0.252 0.531 0.719 0.342 0.689

RUSBoost 0.877 0.221 0.226 0.919 0.330 0.583

CS SVM 0.801 0.396 0.807 0.192 0.460 0.599

KNN 0.855 0.241 0.109 0.904 0.151 0.582

CSDNN 0.890 0.314 0.649 0.557 0.321 0.619

SNN-FA 0.893 0.711 0.649 0.901 0.676 0.688

IDEM 0.898 0.775 0.796 0.927 0.791 0.719

Discussion: The specificity is high using all the methods
because the classifier was able to classify the majority class
(positive) samples well but failed in classifying the minority
ones. This is critical because the misclassification cost of
cases is more serious in healthcare. Therefore, rather than
only considering the classification accuracy, other criteria (i.e.,
Sensitivity, PPV and NPV) are also important to measure
the performance for imbalanced datasets. As shown in Table
II, the proposed IDEM outperforms other baselines in terms
of sensitivity, PPV and NPV, which indicates IDEM can
better handle imbalanced data. SMOTE and KNN achieve a
low sensitivity and PPV. This is because SMOTE and KNN
do not pay enough attention to the minority class. SNN-FA
outperforms other baselines in terms of sensitivity and PPV,
which indicates the siamese network framework is a good
solution to analyze the imbalanced data. It is observed from
the experiments that the majority and minority ratio is not
the only issue in building a good predictive model. There
is also a need for enough training samples that display data
properties consistent with the class label assigned to them. The
SNN-FA method performs better than conventional machine
learning and deep neural networks because we only have few
samples for training and the siamese network learns better
from few samples. Since our model leverages both the siamese
network and deep feature embedding, IDEM outperforms other
baselines on the few and imbalanced datasets. The feature
attention layer in the IDEM makes it interpretable to identify
which features contribute to the classifier in distinguishing

case and control.

V. CONCLUSION

Few samples and class imbalance are common problems
with most medical datasets [25]. Although deep learning has
achieved great success in classifying clinical diagnosis [26], it
requires plenty of training data. Most existing deep learning
methods tend to overfit and fail to generalize in biomedical
research where the training sample size is usually small and
unbalanced. To address this problem, we propose the IDEM
model that contains feature attention and feature embedding
using siamese networks. We conducted extensive experiments
on three medical datasets with few samples and highly skewed
class distributions. From the results, IDEM is able to identify
noise features and significant features. Compare with tradi-
tional methods, IDEM is more effective to classify the minority
samples, and it exhibits obvious advantages when the dataset
is extremely imbalanced.
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