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While microarray-based expression profiling has facilitated the use of
computational methods to find potential cis-regulatory promoter
elements, few current in silico approaches explicitly link regulatory motifs
with the transcription factors that bind them. We have thus developed a
TF-centric clustering (TFCC) algorithm that may provide such missing
information through incorporation of biological knowledge about TFs.
TFCC is a semi-supervised clustering algorithm which relies on the
assumption that the expression profiles of some TFs may be related to
those of the genes under their control. We examined this premise and
found the vicinities of TFs in expression space are often enriched with
the genes they regulate. So, instead of clustering genes based on the
mutual similarity of their expression profiles to each other, we used TFs
as seeds to group together genes whose expression patterns correlate
with that of a particular TF. Then a Gibbs sampling algorithm was applied
to search for shared cis-regulatory elements in promoters of clustered
genes. Our working hypothesis was that if a TF-centric cluster indeed con-
tains many targets of the seeding TF, at least one of the discovered motifs
would be the site bound by the very same TF. We tested the TFCC
approach on eight cell cycle and sporulation regulating TFs whose bind-
ing sites have been previously characterized in Saccharomyces cerevisiae,
and correctly identified binding site motifs for half of them. In addition,
we also made de novo predictions for some unknown TF binding sites.
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Introduction

Understanding how the expression levels of
thousands of genes are regulated at all times in
the life of a cell remains one of the greatest chal-
lenges of molecular biology. A major component
of gene regulation occurs at the level of transcrip-
tion. Central to this mechanism are transcription
factors (TFs), proteins that typically bind to
specific, short DNA sequence motifs of ,5–25 bp
in the cis-regulatory region (promoter, enhancer)
of a gene and activate or repress its transcription.

The identification of relevant TFs and their binding
sites is an important step in elucidating the mecha-
nism of transcriptional regulation of a particular
gene.

Traditionally, TF binding sites have been charac-
terized by a variety of different experimental
approaches.1 The recent advancement in high-
throughput gene expression monitoring tech-
nology and availability of complete genome
sequences enable the use of computational
methods to find potential TF binding sites. For
instance, genes can be grouped into disjoint clus-
ters on the basis of similarity in their expression
profiles or functional annotations.2– 6 Genes in the
same cluster are thought to be transcriptionally
co-regulated, and their regulatory regions can be
analyzed for the presence of shared sequence
motifs.6 – 8 But few of these approaches attempt
to explicitly link computationally discovered
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regulatory motifs with the transcription factors that
bind them. We have developed a TF-centric clus-
tering (TFCC) algorithm that may provide such
missing information.

TFCC is built upon the assumption that the
expression profiles of some TFs may be related to
those of the genes under their control. Previous
experimental observations suggest that in at least
a few instances, the mRNA levels of TFs and some
of their targets appear to be correlated.9 – 11 We also
notice that in expression space, genes often reside
in the vicinity of the TFs that regulate them (see
below). Since TFCC groups together genes that
share a common expression pattern with a par-
ticular TF, we suspect some of them may contain
the regulatory motif bound by this factor.
AlignACE,3,5 a Gibbs sampling-based motif finding
algorithm, is applied to search for such shared cis-

regulatory elements in promoters of clustered
genes. Our working hypothesis is that if a
TF-centric cluster indeed contains many targets of
the seeding TF, one would expect at least one of
these discovered motifs to be the site bound by the
very same TF (Figure 1(a)). Here we not only tested
the approach on eight TFs whose binding sites have
been previously characterized in Saccharomyces
cerevisiae, but also proposed novel predictions for
some TFs with unknown binding sites.

Results

Enrichment of target genes around TFs in
expression space

We first set to examine the basic premise of our
method, namely genes regulated by some TFs are
clustered around them in expression space. Testing
such a hypothesis is confounded by our lack of
accurate and complete knowledge about the sets
of genes regulated by many TFs. As an estimate,
we used recent genome-wide chromatin immuno-
precipitation and mutational analyses,12 – 14 and
obtained a list of genes most likely to be controlled
by the TFs studied here. They were classified as
targets for the purpose of this study. We then
assessed the extent to which TFs are surrounded
by their target genes in expression space from the
evaluation of the pairwise Pearson correlation
coefficients between each TF and its known targets.
We derived a P-value on the null hypothesis that
there is no enrichment of target genes around a TF
by comparing the above correlation coefficient
values to those obtained using a random sample
of genes and the same TF. As seen in Table 1, five
(Ndt80, Fkh1, Swi4, Fkh2 and Met32) of the eight
TFs we studied have expression profiles signifi-
cantly (P , 0.001) more highly correlated with
their respective targets than with genes randomly
selected from a pool of 3000 open reading frames
(ORFs) that vary most in expression.

Table 1. Enrichment of target genes in the vicinity of TFs
in expression space

TF Averagea Right-side tailb

Ndt80 ,0.001 ,0.001
Met32 ,0.001 ,0.001
Fkh1 ,0.001 ,0.001
Mbp1 0.97 0.02
Mbp1c ,0.001 ,0.001
Swi4 ,0.001 ,0.001
Fkh2 ,0.001 ,0.001
Swi5 0.33 0.956
Mcm1 0.133 1

a P-values on the hypothesis that the average correlation coef-
ficient between a TF and its target genes is equal or lower than
the average correlation coefficient between it and the same num-
ber of randomly sampled genes.

b P-values on the hypothesis that the fraction of target genes
whose correlation with a TF is above 0.95 (for sporulation data
set) or 0.7 (for cell cycle data set) is equal or less than the frac-
tion of randomly sampled genes whose correlation with the TF
is above that same threshold.

c The correlation coefficients between Mbp1 and its target
genes or randomly sampled genes were calculated with a time
delay of ten minutes and negative correlation type.

Table 2. Sizes of the six types of clusters generated for each TF

TF No time
delay, þb

Time
delay,a þb

No time
delay, 2b

Time
delay,a 2b

No time
delay, þ/2b

Time
delay,a þ/2b

Fkh1 30 11 5 6 35 17
Fkh2 23 1 17 4 40 5
Mcm1 4 0 27 2 31 2
Met32 9 0 0 1 9 1
Swi5 56 48 15 8 71 56
Mbp1 17 17 1 22 18 39
Swi4 59 12 1 0 60 12
Ndt80 198 NAc 3 NAc 201 NAc

Cutoffs of 0.8 and 0.95 were set on the correlation coefficient scores for the cell cycle and sporulation data, respectively. We used a
higher cutoff for the sporulation data because this response is characterized by a lower number of different types of profiles (data
not shown).

a Time delay indicates ORF expression was delayed from TF expression by one time point during clustering.
b (þ ) Positive correlation only; (2) negative correlation only; (þ/2) positive and negative correlation.
c Only clusters without time delay were produced for Ndt80 because a much longer and uneven time interval was used in the

sporulation experiment.12
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Benchmark testing of TFCC

Next we tested TFCC’s capability of discovering
transcription factor binding sites by generating

clusters with these eight TFs as seeds. For every
TF, we computed the Pearson correlation coeffi-
cients between it and each of the 3000 most vari-
able ORFs according to their variance-normalized

Figure 1. (a) Strategy for identifying TF binding sites via TFCC. Genes (blue) that share an expression pattern analo-
gous to that of a particular TF (red) were grouped together. Then a motif finding algorithm was applied to search for
shared cis-regulatory elements in the promoters of clustered genes. Our working hypothesis was that if a TF-centric
cluster indeed contains many targets of the seeding TF, at least one of the discovered motifs would be the site bound
by the TF that was used to seed the cluster. (b) The customary (left) versus TFCC (right) clustering schemes. In the
customary clustering scheme, genes (blue) are clustered based on their correlation to each other. In the TFCC clustering
scheme, genes (blue) are clustered based on their correlation to a TF (red), which serves as the center/seed of the clus-
ter. (c) Types of TF-centric clusters. Time delay indicates ORF expression is delayed from TF expression during clustering
by one data point. (þ) Positive correlation only; (2) negative correlation only; (þ/2) positive and negative correlation.
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expression profiles. Genes that are closely corre-
lated with the TF were grouped together (Figure
1(b)). In order to allow for various regulatory
modes, multiple types of clusters were generated
for each TF (Figure 1(c)). The effect of TFs on the
transcription of the genes they regulate may not
be immediate. For instance, it was recently
reported that cell cycle transcriptional activators
that function during one stage of the cell cycle
regulate transcriptional activators that function
during the next stage.13 To account for such
scenarios, we introduced a time delay between TF

and gene expressions by calculating correlation
coefficient at time points i of the TF profile and
i þ 1 of the gene profile. Additionally, TFs can be
activators, repressors or both. For example, Mig1,
a well-studied DNA-binding zinc finger protein
involved in glucose repression, is a transcriptional
repressor;15 Rap1, on the other hand, can function
as either an activator or repressor of transcription,
depending upon the context of its binding site.16

Therefore, we not only clustered genes whose
expression profiles are positively correlated, but
also those whose expression profiles are negatively

Figure 2. Clusters that generate motifs corresponding to the correct binding site of the seeding TF (CompareACE
score $0.7). Two motifs are usually considered similar with a CompareACE score of 0.7 and above.5,17,25 (a) The tem-
poral profile of a cluster, named according to the seeding TF, with the size of the cluster in parenthesis. It is represented
by a plot of variance-normalized expression pattern of the seeding TF (blue) and the average of all the genes within the
cluster (red) (x-axis: Normalised expression level; y-axis: Time point.). (b) Sequence logo27 representation of the motif
discovered from the cluster (top) that is most similar to the known binding site of the seeding TF (bottom). Com-
pareACE scores are 0.98, 0.96, 0.92 and 0.86 for Ndt80, Met32, Fkh1 and Mbp1, respectively. The overall height of the
stack at each position signifies the information content of the sequence at that position (0–2 bits). The size of each
base is determined by multiplying the frequency of that base by the total information content at that position. The
bases are sorted with the most frequent one on top.
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correlated, with that of the TF. This resulted in six
clusters per TF (see Materials and Methods for
details). Table 2 lists, for every TF, the number of
genes in each cluster type. The temporal profile of
a cluster is represented by a plot of variance-
normalized expression patterns of the seeding TF
and the average of all the genes within the cluster
(Figure 2(a)).

Then we conducted a blind and systematic
search for the upstream DNA sequence elements
shared by members of each cluster. This was done
with the program AlignACE,3,5 which identifies
motifs that are over-represented in a set of
unaligned input sequences. As a total from all six
types of clusters, AlignACE generated an average
of 48(^16) motifs per cell cycle TF (23 motifs for
Ndt80, only three clusters were produced in con-
sideration of a much longer and uneven time
interval used in the sporulation experiment).12

Because a large number of motifs were generated
for each TF, we selected the most statistically
significant ones based on two measures used by
AlignACE, namely MAP and group specificity
scores3,5 (see Materials and Methods for details
about these scores). Previous studies have shown
that most real motifs have a specificity score of
#10210 and MAP score of $5.5,17 For seven out of
eight TFs (except for Mcm1), we found motifs that

pass both these thresholds. In this way we reduced
the AlignACE output to a list of about four candi-
date motifs per TF, a reasonable number to test
with conventional experimental approaches.

We then compared all the significant motifs dis-
covered for each TF with its known binding site
matrix. The motif most similar to the known site
for each TF, calculated by CompareACE,5 is
reported in Table 3. Our approach correctly identi-
fied the binding sites for four (Mbp1, Fkh1, Met32
and Ndt80) out of the seven TFs for which we
obtained significant motifs (Figure 2(b)). We
noticed that the motifs corresponding to the correct
binding site usually rank quite high in their
respective clusters in terms of MAP and/or group
specificity scores (Table 3), suggesting the combi-
nation of these scores may serve to prioritize candi-
date motifs prior to experimental testing of de novo
predictions.

To assess the significance of the above results, we
designed three types of negative controls. First, we
assigned to seeding TFs random gene sets with
sizes (i.e. number of ORFs in a cluster) identical to
the real clusters we obtained from TFCC. Since a
large number of motifs (,48.5 for cell cycle TFs,
and 23 for Ndt80) were found for each TF, it is con-
ceivable that some of them may pass the MAP and
group specificity score cutoffs and match the

Table 3. The significant motif with the highest CompareACE score for each TF

Rank in respective cluster

TF
Time

delaya

Correlation
typeb

CompareACE
scorec

MAP
score

Group
specificity

score,2 log 10

By MAP
score

By group
specificity

score

Ndt80 0 þ 0.98 66 26 3 (out of 8) 1 (out of 8)
Met32 0 þ 0.96 31 10 1 (out of 16) 2 (out of 16)
Fkh1 0 þ 0.92 9 11 5 (out of 11) 1 (out of 11)
Mbp1 1 2 0.86 36 12 1 (out of 13) 1 (out of 13)
Swi4 0 þ/2 0.58 92 34 1 (out of 5) 1 (out of 5)
Fkh2 0 2 0.34 6 14 7 (out of 16) 4 (out of 16)
Swi5 0 2 0.33 5 10 15 (out of 24) 1 (out of 24)
Mcm1d

a Time delay indicates by how many time points ORF expression was delayed from TF expression during clustering.
b (þ) Positive correlation only; (2) negative correlation only; (þ/2) positive and negative correlation.
c A CompareACE score of below 0.7 suggests the correct binding site was not found.
d No significant motifs were derived for Mcm1.

Table 4. Identification of TF binding sites by TFCC from clusters that are correlated with the seeding TF by various
levels of expression similarity

TFa 0.9–0.8b 0.8–0.7b 0.7–0.6b 0.6–0.5b and lowerc

Met32 NFd 0.94e NFd NFd

Mbp1 0.84e 0.96e 0.93e NFd

Swi4 NFd 0.72e 0.81e NFd

Fkh1 NFd NFd NFd NFd

a For Fkh2, Swi5 and Mcm1, the three cell cycle TFs with which TFCC failed, no significant motifs corresponding to their known
binding sites were found from clusters in any of the above correlation coefficient ranges.

b Pearson correlation coefficient range.
c The results of lower ranges (i.e. 0.5–0.4, 0.4–0.3, 0.3–0.2, 0.2–0.1) are exactly the same as those obtained for 0.6–0.5.
d No significant motif corresponding to the known TF binding site was found.
e The CompareACE score of the significant motif that is most similar to the known TF binding site.
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known binding site of the seeding TF by chance.
The random control produced a comparable num-
ber of motifs (,55 per cell cycle TF and 34 for
Ndt80) but was incapable of deriving correct bind-
ing sites for any of the eight TFs. Thus, our results
cannot be simply explained by the large number
of motifs produced.

Second, we collected genes that surround each
TF at different levels of expression similarity
(i.e. 0.9–0.8, 0.8–0.7, 0.7–0.6, . . ., 0.3–0.2, 0.2–0.1).
Because those in the lower end of the correlation
coefficient spectrum are less related to the seeding
TFs than those in the higher end, they serve as a
negative control for the TFCC approach. The fact
that correct binding sites were only derived from
genes that are located in the vicinity of a few TFs
(.0.6), but not those distant from them (Table 4),
demonstrates the necessity of a high enough
similarity between the expression profiles of the
seeding TF and the remaining genes in the cluster
for TFCC to succeed.

Third, we introduced a reverse time shift by
calculating the correlation coefficient at time points
i of the TF profile and i 2 1 of the ORF profile. This
way genes are still tightly clustered, but probably
not related to the seeding TF in a biologically
meaningful manner, since the expression profiles
of TFs are less likely to be delayed behind their
gene targets as the time intervals between
measurements increase. Therefore, it enables us to
investigate whether clustering alone is sufficient to
produce the results obtained by TFCC. Although
the exact same motif search and selection pro-
cedures were carried out, the reverse control failed
to derive correct binding sites for any of the eight
TFs, suggesting that the link between a motif and

the TF that was used to seed the cluster it came
from is not random.

While we correctly identified the binding sites
for Fkh1, Mbp1, Met32 and Ndt80, we did not
derive any significant motif similar enough to the
known binding sites of the other four TFs we
tested, namely Swi4, Fkh2, Swi5 and Mcm1 (Figure
3). It may be noted, however, that “correct” motifs
were found for Swi4 and Fkh2 (CompareACE
scores5 0.73 and 0.70, respectively), yet they did
not pass the double significance thresholds defined
by MAP and group specificity scores.5,17 The lack of
success with Swi5 may be explained in part by a
previous report that Swi5 does not have a highly
conserved binding sequence.18 In the case of
Mcm1, although we failed to identify its binding
site, we managed to avoid making any false pre-
diction as no significant motif was found from
Mcm1-seeded clusters. Comparing expression pro-
files of the TFs for which we succeeded (Figure
2(a)) and of those for which we failed (Figure 3)
shows no simple correlation between rate of
success and expression-related parameters such as
mean expression level and variance.

Our results confirm that the success of the TFCC
approach is dependent on whether genes are
clustered near their regulating TFs in expression
space. Among the four TFs (Mbp1, Fkh1, Met32
and Ndt80) that TFCC managed to derive correct
binding sites for, the vicinities of three of them
(Fkh1, Met32 and Ndt80) are significantly enriched
with the genes they regulate (Table 1). The fact that
the motif for Mbp1 was only discovered with a
time shift of ten minutes and negative correlation
may be explained by the observation that many of
its experimentally defined targets do not cluster

Figure 3. The expression profiles of the four TFs that TFCC fails to derive any significant motifs corresponding to
their documented binding sites as for Figure 2. (x-axis: Normalised expression level; y-axis: Time point.).
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Table 5. Predictions made by TFCC for TFs with unknown binding sites

TF Prediction of binding site Time delaya Correlation typeb MAP Group specificity score, 2 log 10

Zds1 0 2 6 11

Rsc3 0 þ/2 6 11

0 þ 7 12

1 2 23 9

1 2 5 10

Swi1 0 2 5 12

1 2 9 10

1 2 6 10

1 2 5 10

1 þ/2 6 11

Ndd1 0 þ/2 10 10

0 þ 12 10

a Time delay indicates ORF expression was delayed from TF expression by one time point during clustering.
b (þ) Positive correlation only; (2) negative correlation only; (þ/2) positive and negative correlation.
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with it directly (Table 1). A close examination of
Mbp1 indicates that the expression profiles of the
TF and its known targets are significantly anti-
correlated with a time shift of ten minutes
(P , 0.001; Table 1). On the other hand, some of
the cases where TFCC failed to derive the correct
binding sites, e.g. Swi5 and Mcm1, correspond to
TFs that do not cluster with the genes they are
known to regulate (Table 1).

De novo prediction of TF binding sites

We also applied the TFCC approach to TFs
whose binding sites have not been reported. A
few of our in silico predictions can be found in
Table 5 and the rest are on our supplementary
website. For each TF, we list all the significant
motifs (i.e. group specificity score of #10210 and
MAP score of $5) derived by TFCC. In addition,
we include the type of cluster they came from,
which may suggest the mode of regulation
(positive and/or negative; with or without time
delay). We predict the binding site of the cell cycle
regulator Zds1 to be CACGTG, which, interest-
ingly, is palindromic (Table 5), and shows a signifi-
cant preference towards a particular location in the
promoter, 173 base-pairs from the transcription
start site (P-value ¼ 3.2 £ 1025 as measured by the
positional bias score).5

Discussion

Current expression-based clustering methods
can be effectively used to discover cis-regulatory
elements. But they do not provide an immediate
link between the computationally identified motifs
and the TFs that bind them. An interesting study
published recently attempted to establish such a
link by decomposing S. cerevisiae promoter regions
into 7-mers, followed by correlating the “com-
posite” expression pattern of all genes containing
each 7-mer with TF expression patterns.11 Our
TFCC algorithm may be viewed as a comple-
mentary method to this cis/TF approach for
identifying TF binding sites in silico. From a
methodological point of view, the two approaches
are the converse of each other: TFCC begins with
TF expression profiles and proceeds to identify
motifs, while cis/TF begins with motif expression
profiles and proceeds to identify TFs.

TFCC differs from customary expression-based
clustering methods in several aspects (Figure
1(b)). First, it is a semi-supervised clustering
method in that it utilizes the biological knowledge
about which genes are TFs. Second, since TFs are
used as seeds for clustering, it allows the grouping
of genes that are less correlated with each other,
provided they are sufficiently correlated with the
same TF. Lastly, it permits genes to belong to more
than one cluster, an important property for
clustering studies aimed at exploring multifactorial
gene controls.19 The proposed method may not

only predict the motif(s) bound by a TF, but also
has the potential to imply which genes are under
its regulation and the mode of such regulation
(positive and/or negative; with or without time
delay).

It should be noted that if several TFs share very
similar expression profiles, they will seed similar
cluster(s) and thus lead to similar motif(s). TFCC
is limited in its capability to differentiate which of
these TFs actually bind the motif(s). In such cases,
however, TFCC may suggest an indirect relation-
ship between these TFs and the motif(s) as co-
expressed TFs are likely to be functionally related:
a potential scenario is that these TFs form a com-
plex over the motif and only one of them contacts
the DNA physically. Of course, when unrelated
TFs happen to have similar expression profiles,
TFCC will produce wrong predictions for (at least)
some of them.

The TFCC approach requires that the mRNA
levels of seeding TFs fluctuate beyond “biological
noise”20 and should be applied to such transcripts
only. However, intensive repetitive measurements
and adequate (gene-specific) statistical models are
needed to determine which genes (and in par-
ticular, which TFs) vary sufficiently. At least one
attempt has been made in this direction.20 We
anticipate that when such data become more
readily available, the TFCC approach will be
applied more rigorously to TFs fulfilling the
variance requirement. In the present study, we
focused on a set of TFs that have been implicated
in the regulation of either cell cycle13 or sporu-
lation, because their mRNA levels are likely to
fluctuate beyond “biological noise” during the
respective processes.

Since TFs are usually lowly expressed and may
be controlled post-transcriptionally, the feasibility
and reliability of their mRNA abundance measure-
ments from arrays have often been met with
skepticism. Methods such as TFCC and cis/TF are
built upon the expression patterns of TFs estimated
by arrays and assume they are related to that of the
genes under their control. The encouraging results
obtained by TFCC and cis/TF, supported also by
previous experimental observations,9,10 suggest
that microarray measurements are capable of cap-
turing the variations of at least some TFs at the
level of expression, and also that such changes can
be correlated with the mRNA fluctuation of the
genes they regulate.

Materials and Methods

Expression data

The raw expression data we used for our compu-
tational analysis came from Cho et al.18 (cell cycle) and
Chu et al.12 (sporulation). There are 15 valid time points
in the Cho data set, across two cell cycles (time points
90 and 100 minutes were excluded from our analysis
due to the less efficient labeling of their mRNA during
the original chip hybridizations);6 the Chu data set
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reports seven successive time points. We obtained both
expression data sets from ExpressDB.21 Based on the
normalized dispersion in expression level of each gene
across the time points (SD/mean), we chose the most
variable 3000 ORFs.6 Then each of their expression pro-
files was variance normalized by subtracting the mean
across the time points, and dividing by the standard
deviation across the time points:6

Yij ¼
Xij 2 kXilffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

15

X15

j¼1

ðXij 2 kXilÞ2
vuut

:

where Xij represents the expression level of gene i at time
point j, Yij represents the respective normalized value
and kXil represents the mean expression level of gene i
across all time points.

Benchmark TFs

As the Cho data came from a study of the mitotic cell
cycle, we decided to focus on a recently defined set of
TFs that are involved in cell cycle regulation:13 Mbp1,
Swi4, Mcm1, Fkh1, Fkh2 and Swi5 (Swi6, Ndd1 and
Ace2, also well-known cell cycle regulators, were not
covered in our analysis because either they do not bind
DNA directly, or their binding site matrices are not
available). Met32 was included as not only methionine
biosynthesis is related to cell cycle,4 but also the site
bound by Met32 itself has appeared in a previous study
utilizing cell cycle data.6 To test the TFCC approach on
another independent data set, we used Chu’s sporu-
lation data12 and seeded with an established sporulation
factor, Ndt80.

Cluster types

We generated six types of gene clusters for each cell
cycle TF.

1. Positively correlated ORFs only and no time delay
between TF and ORF expressions.

2. Positively correlated ORFs only and ORF expression
is delayed from TF expression by one time point
(corresponding to ten minutes in the Cho data).18

3. Negatively correlated ORFs only and no time delay
between TF and ORF expressions.

4. Negatively correlated ORFs only and ORF expres-
sion is delayed from TF expression by one time
point.

5. Positively and negatively correlated ORFs and no
time delay between TF and ORF expressions.

6. Positively and negatively correlated ORFs and ORF
expression is delayed from TF expression by one
time point.

Only clusters without time delay were produced for
Ndt80 because a much longer and uneven time interval
was used in the sporulation experiment.12

Determining the statistical significance of the
enrichment of target genes around TFs in
expression space

The gene targets of Fkh1, Fkh2, Mbp1, Swi4, Swi5 and
Mcm1 were obtained from a recent study.13 For the
sporulation factor Ndt80, we used the list of genes that

are induced at least threefold when the factor is
expressed ectopically as its potential targets.12 As there
is very limited literature on the genes regulated by
Met32, we used the following two criteria to identify
candidate target genes: (1) containing the experimentally
verified binding site (50AAACTGTGG30)14 in their pro-
moters; (2) involved in amino acid metabolism as anno-
tated in the Munich Information Center for Protein
Sequences (MIPS) database.22 A total of 11 genes satisfy
both criteria. The list of target genes for each TF can be
found on our supplementary website.

We calculated the average correlation coefficient
between each TF and its target genes, as well as the frac-
tion of target genes whose correlation coefficient with the
TF is above 0.7 (for cell cycle data set) or 0.95 (for sporu-
lation data set). A gene set with size identical to the
number of known targets was randomly selected from
the 3000 most variable ORFs in the genome. Their
average correlation coefficient with the TF and the frac-
tion over the same threshold were computed. We
repeated the sampling process 1000 times, counting the
number of these runs that achieved an average or frac-
tion equal or higher than the values we obtained with
the true gene targets of the seeding TF. A P-value of
,0.001 indicates the outcome from none of the 1000
random runs reaches or surpasses that from the run
using the true TF targets.

Searching for common upstream regulatory motifs
and selection of significant ones

We used AlignACE (with default settings) to conduct
a search for common DNA-sequence motifs in the
upstream regions (800 bp)23,24 of the ORFs within each
TF-centric cluster. AlignACE is based on a Gibbs
sampling algorithm and returns a series of motifs that
are over-represented in the input set.3,5 To select the
most statistically significant motifs, we utilized MAP
and group specificity scores, two parameters calculated
by AlignACE and its accessory programs. MAP score
measures the degree to which a motif is over-represented
relative to the expected random occurrence of such a
motif in the sequence under consideration; the group
specificity score gauges how well a given motif targets
the upstream regions of the genes used to find it relative
to the upstream regions of all genes in the genome. We
selected the most significant ones on the basis of a
combined MAP and group specificity score thresholds
of 5 and 10210, respectively, since it has been shown that
most real motifs score higher than these cutoffs.5,17

Evaluation of discovered motifs against known TF
binding sites

We compared the significant motifs discovered for
each TF and its previously published binding site matrix
with CompareACE,5 a program that performs a pairwise
comparison between the position-specific weight
matrices of two motifs and returns a value between
21.0 and 1.0 for the best possible alignment. The value
corresponds to the Pearson correlation coefficient
between the base frequencies of the positions in the
aligned portion of the motifs. Two motifs are considered
similar with a CompareACE score of 0.7 and above.5,17,25

We obtained the known binding site matrices from a pre-
vious study26 and they are listed on our supplementary
website.
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Parameters and settings

As many other bioinformatics works, the TFCC pro-
cedure requires the determination of multiple settings
and threshold values, including the correlation coef-
ficient cutoff for expression profile clustering, the
AlignACE running parameters, and motif significance
thresholds (MAP and group specificity). While most of
the settings chosen here are adopted from previous
studies5,6,17 and are somewhat arbitrary, a detailed
“parameter landscape” analysis indicates the choice of
threshold values from a variety of potential settings
would have relatively little effect on the final results. As
shown by sFigure 1 on our supplementary website,
TFCC performance appears largely insensitive to a wide
range of correlation coefficient cutoffs. This may be
explained by AlignACE’s capability of finding even
slightly over-represented motifs. Note the above results
do not contradict with our control no.2 where correct
binding sites could not be derived from genes in the
lower end of the correlation coefficient spectrum (Table
4). For more details, see our supplementary website
sFigure1. The motif significance thresholds were adopted
for two reasons. On the one hand, they decrease the
number of candidate binding sites dramatically
(approximately sevenfold with the group specificity
score cutoff and twofold with the MAP score cutoff;
sFigure 3). On the other hand, they should have minimal
impact on true positives as previous studies have shown
that most real motifs have a specificity score of #10210

and a MAP score of $5.5,17

Supplementary website

A more complete list of our in silico predictions for
unknown TF binding sites, the “parameter landscape”
analysis, and the gene targets for each TF can be found
on our supplementary website (http://genetics.med.
harvard.edu/~zzhu/TFCC.html).
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