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Several methods have been developed to characterize the specifici-
ties of protein-binding molecules. Display technologies that utilize 
cDNA libraries are often limited by the small fraction of in-frame  
polypeptides and the highly skewed clonal abundances that reflect 
differences in gene expression1. Two-hybrid and split-reporter tech-
niques2 are limited to analyses of bait molecules that can be presented 
within the cell, and thus are not suitable for drug or antibody target 
identification. More recently, protein microarrays have been used for 
these purposes3, but their construction typically requires individual 
proteins to be purified and arrayed, resulting in substantial costs and 
various degrees of protein denaturation.

To address these limitations, we developed PLATO (parallel analysis 
of translated open reading frames (ORFs)), a method that combines 
in vitro display of full-length proteins with analysis by high-throughput  
DNA sequencing. We demonstrate the utility of PLATO by perform-
ing diverse interaction screens against the human ORFeome, a nor-
malized collection of 15,483 human cDNAs in the Gateway cloning 
system4. To express an ORF library in vitro, we used ribosome dis-
play, a technique used to prepare a library of mRNA molecules that, 
lacking stop codons, remain tethered to the proteins they encode5.  
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Identifying physical interactions between proteins and other 
molecules is a critical aspect of biological analysis. Here 
we describe PLATO, an in vitro method for mapping such 
interactions by affinity enrichment of a library of full-length 
open reading frames displayed on ribosomes, followed 
by massively parallel analysis using DNA sequencing. We 
demonstrate the broad utility of the method for human proteins 
by identifying known and previously unidentified interacting 
partners of LYN kinase, patient autoantibodies, and the small-
molecules gefitinib and dasatinib.

Ribosome display imposes minimal constraints on the length or com-
position of proteins that can be efficiently displayed.

We constructed a ribosome display vector (pRD-DEST; Supplementary 
Fig. 1 and Supplementary Methods), compatible with Gateway cloning, to 
be used as a recipient for a concentration-normalized pool of ORF clones. 
After recombination, DNA was amplified by PCR, yielding linear templates 
lacking stop codons. Following in vitro transcription and translation, the 
ribosome-displayed ORFeome was screened for binding to immobilized 
bait(s). Enrichment of candidate binding proteins can be rapidly assessed 
using quantitative real-time PCR (qPCR) with ORF-specific primers; 
alternatively, unbiased discovery of interactions can be achieved by deep 
sequencing of the enriched mRNAs (Fig. 1a). Sequencing libraries can 
additionally be highly multiplexed, thereby reducing the cost of each 
screen. All steps required for PLATO are compatible with automation 
using standard liquid-handling robotics.

Our strategy for deep sequencing of enriched display libraries 
employs recovery of the ORF 3′ termini, which minimizes interfer-
ence from RNA degradation and ensures stoichiometric correlation 
between tag counts and transcript abundance. To this end, we adopted 
the following protocol: (i) chemically fragment enriched-mRNAs;  
(ii) reverse-transcribe fragments using a common primer; (iii) polya-
denylate cDNAs; (iv) add sample barcodes and sequencing adaptors 
using two-stage PCR amplification (Fig. 1b). Subsequent, multiplex, 
deep-sequencing analysis of pooled display libraries is reproducible 
and quantitative (Supplementary Fig. 2). We sequenced a sample of 
the unenriched human ORFeome display library mRNA (input) and 
detected the transcripts of 14,582 unique ORFs out of 15,483 total 
cDNAs in the entry clone library (94%; Fig. 1c).

To test the ability of PLATO to identify protein-protein interactions, 
we used LYN kinase, which contains common structural components 
of the SRC family, including SH3, SH2 and kinase domains6, and has 
been extensively characterized for its interaction partners. After affin-
ity enrichment of the human ORFeome using GST-LYN, GST alone 
or an unrelated GST-fused protein (GST-MUTED), we used Illumina 
sequencing to identify proteins specifically bound by GST-LYN (Fig. 2a, 
Supplementary Table 1 and Supplementary Fig. 3a). A number of 
established LYN binding partners were among those identified, and we 
validated two by qPCR (Fig. 2b)7,8. We ranked candidate LYN interactors 
by their degree of enrichment on GST-LYN, and confirmed five of seven 
tested by western blot analysis (Fig. 2c). Of the two candidates not vali-
dated, one bound nonspecifically to GST, whereas the other was a true 
negative. Among the highly enriched ORFs, SH2 domain–containing  
proteins were over-represented (P < 0.01, Fisher’s test). Consistent with 
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a role for LYN autophosphorylation in mediating interactions with SH2 
domains, phosphatase treatment of immobilized GST-LYN abolished 
binding of SH2D1A and SH2D4A, but only partly diminished PIK3R3 
binding, suggesting the presence of an additional interaction domain 
besides SH2 (Supplementary Fig. 3b). These proteins have not previ-
ously been reported to interact with LYN.

We next asked whether PLATO could be used to identify protein 
targets of antibodies from patients with autoimmune disease. We first 
examined target enrichment using affinity-purified P53 and PDCD4 
antibodies immobilized on protein A/G beads for library immuno-
precipitation. As shown by qPCR, P53 and PDCD4 transcripts were 
robustly enriched by their cognate antibodies, but not by control anti-
bodies (Supplementary Fig. 4).

In previous work, we synthesized an oligonucleotide library encod-
ing a 36-residue overlapping human peptidome for display on bacte-
riophage T7 (T7-Pep). Deep sequencing of affinity-enriched T7-Pep 
using autoimmune cerebrospinal fluid from three individuals with 
paraneoplastic neurological disorder (PND) uncovered known and 
novel autoantigens9. We screened these samples using PLATO. Unlike 
T7-Pep, the human ORFeome is an incomplete collection of full-length 
proteins, and our findings reflect the inherent complementarity of these 
libraries. For example, neuro-oncological ventral antigen 1 (NOVA1) is 
absent from the human ORFeome v5.1, and so PLATO did not detect 
this known autoreactivity in patient A, whereas it was robustly identi-
fied with T7-Pep. Conversely, PLATO identified numerous autoantigens  

for each patient that were missed in our peptidome screens 
(Supplementary Table 2). For example, PLATO analysis of patients 
A and B revealed immunoreactivity with known cancer autoantigens 
not detected with T7-Pep. Several of these reactive antigens were con-
firmed by means of immunoprecipitation and western blot analysis 
(Fig. 2d and Supplementary Fig. 5a–d). In addition, we had previously 
established that antibodies from patient C recognized the tripartite 
motif containing proteins TRIM9 and TRIM67. PLATO consider-
ably expanded the members of the TRIM family recognized by anti-
bodies in this patient’s cerebrospinal fluid to include TRIM1/MID2, 
TRIM18/MID1, TRIM54 and TRIM55 (Fig. 2e). Notably, multiple 
sequence alignment results in tight clustering of this precise subset 
of the extended TRIM family, suggesting the presence of shared, con-
formational epitopes not represented in T7-Pep10. As an alternative 
PLATO readout, hybridization of autoantibody-enriched libraries to 
custom oligonucleotide microarrays revealed a similar list of autoan-
tigens (Supplementary Fig. 6).

Discovering the targets of small molecules typically involves the use 
of cell extracts containing a wide distribution of protein abundances. 
Analysis by mass spectrometry is thus biased toward highly expressed 
proteins. Normalized ORF libraries and quantitative DNA sequenc-
ing might therefore offer greater power to detect interactions of pro-
teins with small molecules. We tested this idea with gefitinib (Iressa), 
an inhibitor of epidermal growth factor receptor’s (EGFR’s) tyrosine 
kinase domain. Gefitinib interacts with the ATP-binding pocket of 
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Figure 1  Parallel analysis of translated ORFs (PLATO). (a) ORF display scheme. The pooled human ORFeome v5.1 entry vector library is cloned by 
means of attL-attR (LR) recombination into the pRD-DEST expression vector. Expression plasmids are PCR amplified to generate the DNA templates 
for in vitro transcription. After in vitro translation, the protein-mRNA-ribosome complexes are incubated with protein, antibody or small-molecule bait 
immobilized on beads. The enriched mRNA library is recovered from bait-prey bead complexes for further analysis. (b) Processing of mRNA samples for 
deep DNA sequencing. After fragmentation and reverse transcription (RT) using a universal primer to recover the 3′ end of ORFeome transcripts, cDNA is 
polyadenylated with terminal deoxynucleotide transferase (TdT) and amplified for multiplex deep sequencing using primers containing a sample barcode (bc) 
and the P5 and P7 Illumina sequencing adaptors. (c) Sequencing reads of the unenriched human pRD-ORFeome mRNA library (the ‘input’ library). Most 
ORFs were sequenced at least once.
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EGFR and additional tyrosine kinases11. Analysis after ORFeome 
affinity enrichment on gefitinib-coupled beads revealed significant  
(P < 0.05) enrichment of 10 out of the 17 predicted targets tested 
(Fig. 2f). This experiment demonstrates the relative ease by which can-
didate protein interactions can be assayed with PLATO; the binding of 
any ORF can be rapidly assessed using qPCR without the need for clon-
ing or western blot analysis. ORFeome libraries affinity-enriched by 
the SRC family tyrosine kinase inhibitor dasatinib (Sprycel) exhibited 
overrepresentation of protein kinases (9 out of 75; P = 0.0003; Fisher’s 
test), including the known target LCK and several targets not previously 
associated with this compound (Supplementary Table 3).

PLATO’s limitations include incomplete ORFeome collections 
and a lack of protein post-translational modifications. However, the 
quality, completeness and availability of these libraries will continue 
to improve over time. In addition, very large ORF proteins may be 
displayed with low efficiency and proteins containing membrane-
spanning or aggregation-prone domains that normally require host 
cellular machinery for proper folding may aggregate; these factors 
may complicate data analysis. Finally, ribosome display imposes cer-
tain limitations on the conditions under which affinity enrichments 
can be done (e.g., low temperature and absence of RNase contamina-
tion are essential), and using proteins containing nucleic acid–binding 
domains as baits may result in nonspecific binding. When the required 
conditions for PLATO are met, however, this method provides  

three advantages as a tool for proteomic investigations. First, pro-
tein size and composition should minimally affect display efficiency. 
Second, its cost and instrument requirements are low. Finally, the 
rapidly declining cost of DNA sequencing will make PLATO an ideal 
platform for projects involving large numbers of samples, such as 
cohort-scale autoantibody profiling or structure-activity relationship 
analyses of small-molecule compounds.

Note: Supplementary information is available in the online version of the paper.
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