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1 Introduction 
 
This document provides supplemental information for our main article “Mathematical models of 
diffusion-constrained polymerase chain reactions: basis of high-throughput nucleic acid assays 
and simple self-organizing systems.”  Supplemental information is divided into two main 
sections: supplemental results not published in the main article, and additional details on 
algorithms.  Supplemental results are provided in section 2, and algorithm details are provided in 
section 3.  
 
We adopt the terminology and notation used in the main article.  In particular, there are two 
classes of model: single polony growth models (SPGMs) and two polony interaction models 
(TPIMs).  For each of these, there are three individual models that simulate polony growth and 
interaction in one, two, or three dimensions (symbolized by 1D, 2D, and 3D, respectively).  The 
molecular species and algorithm parameters considered by the models are described in Tables 1 
and 2 of the main article. 
 
Equations, tables, and figures in this document are prefixed by “E”, “T”, and “F”, respectively, 
followed by the section number, and then suffixed with –1, –2, etc.   For bookkeeping purposes, 
many figures and some text passages mention the names of files which are the sources of the data 
used to create the figures or support the discussion in the text.  Although these may not be 
intrinsically meaningful to the reader, they will assist us in answering any questions which 
readers may pose concerning these figures. 
 
 
2 Supplemental results 
 
2.1 SPGM yield analysis 
 
As noted in the main article, we have no mathematical proof that polony yield asymptotically 
develops power law behavior with exponent 1, 2, and 3 for the 1D, 2D, and 3D models.  
However, we note that the 2D and 3D cases can be reduced to the 1D case: This is because 2D 
and 3D diffusion equations in polar coordinates ∂C/∂t = ∂2C/∂r2 + (a/r)⋅∂C/∂r reduce to a 1D 
Cartesian diffusion equation when r is sufficiently large because the (a/r)⋅∂C/∂r term drops out.  
Moreover, if it is accepted on the basis of Figure 4b in the main article that 1D polonies tend 
towards linear growth, the fact that T remains unchanged everywhere except at the edge of the 
polony implies that, in the limit, the polony enlarges by a constant increment per cycle of polony 
diameter. Therefore, since, in the limit, 2D and 3D polonies behave like 1D polonies, their 
diameters must also increase in constant increments per cycle, and thus must eventually exhibit 
quadratic and cubic growth, respectively. 
 
Figure F2.1-1a expands on Figure 4a in the main article by showing log10 T yields over 100 
cycles for the four SPGM simulations analyzed in Figure 4b; this includes standard parameter 
simulations (Table 2 of main article) for a 2D 10 µm thick gel, a 2D 1 µm thick gel, and a 1D 
model in addition to the 3D polony model shown in Figure 4a.  Graphed with the log10 T yields 
are the compound exponential / power law regressions of these yields computed according to 
equation (1) of the main article.  The regressions indicate that the dimensionality of the polony 
model affects the breakpoint between exponential and power law growth.  Unsurprisingly, the 
transition occurs earlier in lower dimensions, doubtless due to the fewer degrees of freedom 
available for polony access to fueling species P and Q in lower dimensions.  Specifically, the 1D 
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simulation breaks into power law growth at cycle 7.8, the 2D 1 µm gel at cycle 15.0, and the 3D 
10 µm gel at cycle 18.7, compared to the 3D breakpoint at cycle 23.3. 
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Figure F2.1-1: Additional SPGM yield analysis. (a) log10 T yields and compound exponential / power law 
regressions after denaturing cycles for four SPGM 100 cycle simulations with standard parameters (Table 
2 of main article): 3D, 10µm thick 2D gel, 1µm thick 2D gel, and 1D, showing the breakpoints between 
exponential and power law growth as determined by the regressions.  (b) Difference between log10 T 
yields for the 10µm and 1µm thick 2D gel SPGM simulations, showing that the 10µm simulation 
asymptotically approaches a 10-fold higher yield (1 log10 unit) compared to the 1µm gel.  Additional 
discussion in text.  Log10 differences for two pairs of simulations at two different algorithm spatial 
resolutions (see section 3.4) are seen to have identical results. 

Reference file: pub.polony2D.dx_25.xb80.xb160.c100.2.outtotals.compare.xls 

F
corresponding 2D 1µm concentrations simply by multiplying by 10; this follows from the SPGM 
equations (Figure 2a of main article) in conjunction with the 10-fold differences in rate constants, 
and ambient initial P and Q concentrations, and Q boundary conditions (i.e., iP and eQ, see Table 
2 of main article) called for by the 10-fold difference in gel thickness.   What prevents this from 
actually happening is that, unlike these other model parameters, the initial conditions at the 
polony seed location for the 10µm and 1µm simulations do not have the 10-fold difference 
required for complete correspondence: Rather, both simulations start with numerically ident
concentrations of ST at the seed location that represent a single ST molecule, and likewise reduce
P by exactly one molecule there.  Complete correspondence resulting in the 10µm simulation 
having 10-fold concentrations relative to the 1µm simulation would require that the 10µm 
simulation start with 10 molecules of ST and a 10 molecule reduction of P.  From this equiv
starting point, the 10µm and 1µm simulations undergo identical exponential growth, but, with 10-
fold less P and Q available to support polony growth, the polony in the 1µm gel exhausts the 
supply P available in its interior earlier than the 10µm gel polony and breaks into power law 
growth ahead of it.  Conversely, the 10µm polony needs a few more cycles to consume the ex
P available to it to reach this point of polony maturity (see main article).  These trends are clearly
visible in Figure F2.1-1a, where it is also indicated that the difference in time needed to reach 
maturity is about 4 cycles.  During this period, the growth of the 1µm polony slows from 
exponential to power law while the 10µm polony is still exponential, effectively allowing 
10µm polony to make up much of the difference between its actual 1 ST molecule starting poin
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and the 10 ST molecule initial condition that would have supported complete correspondence 
with 1µm polony evolution.  Consequently, at around cycle 19, when both polonies have reach
maturity, the log
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10 T yield curves have separated to a distance of about 1 log10 unit, meaning that 
T yield in the 10µm polony is now nearly 10-fold more than that for the 1µm polony.  At this 
point, both polonies now have expanding growth faces (see main article), and both are 
approaching power law growth with exponent 2, with the 10µm polony having a slightl
exponent compared to the 1µm polony (Figure 4b in main article) and thus maintaining the 10µm
polony at a slightly higher growth rate.  As seen in Figure F3.2-1b, this slightly higher growth 
allows the 10µm polony to ever more closely achieve the state of complete correspondence wit
the 1µm polony, as the difference between the log10 T yields of the two polonies gets ever closer 
to 1. 
 
 
2
 
O
polony gel.  This might also enhance polony exclusion (see main article) by making polony e
sharper, thereby decreasing the ability of neighboring polonies to invade each other at their edges.  
Both of these effects could also help alleviate an issue that arises when polonies are generated 
from sample DNA libraries containing DNA templates of different sizes: Since small templates
generate much larger polonies than larger templates (Mitra and Church, 1999), polonies made 
from small template polonies in a library can take up an inordinate fraction of the gel area.  On
possible way to decrease diffusion through a gel is simply to increase the concentration of gel 
monomer in the solution that is polymerized to create the gel (Mitra and Church, 1999).  Another 
way may be to use free primers with ‘drag tags’ that slow their movement through a gel.  An 
advantage of the latter is that the gel density is not itself increased, leaving any substrates, 
products, and enzymes used in the polony PCR or subsequent assay reactions that do not ha
drag tags unchanged in their ability to diffuse and interact. 
 
T
simulations in which the diffusion coefficient of free primer DQ was decreased 10-fold from
standard parameter value of 20µm2/sec (Table 2 of main article).  Results are shown in Figure 
F2.2-1.  Decreases in DQ had negligible effects on polony size, yield and morphology as gauged 
by tethered strand T.  As seen in F2.2-1a, the T distributions at cycle 40 were nearly identical for 
all DQ. Figure F2.2-1b shows that these decreases did affect polony yield and morphology as 
gauged by free strand S, however.  Lowering DQ makes it harder for Q to diffuse in from the 
polony edge to replenish Q that has been converted to S, making the overall S yield lower, bu
enough Q gets in to make enough S to convert P to T at normal rates.  This is true even at the 
lowest DQ used in the simulation series (.02µm2/sec).  Here the S distribution is not very differ
from the T distribution (see Figure F2.2-1d) and the large abundance of S over T noted in the 
main article vanishes completely. 
 
H
unlikely to be direct consequences of decreases in DQ.  Rather, any drag tag applied to Q will be 
incorporated into Q’s extension product S and lead to decreases in the diffusion coefficient of free
strand DS.  The simulations summarized in Figure F2.2-1 do not account for any such decrease.  
The extent of the decrease in DS that would be caused by a drag-tag induced drop in DQ is 
presently unknown.  Therefore, to explore this effect, we ran two 3D SPGM simulations in 
DQ remained at the lowest value in the prior series (.02µm2/sec), but where, in addition, DS was  
dropped 10-fold to .0035µm2/sec and again to .00035µm2/sec, compared to its standard value 
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Figure F2.2-1:  Effect on polony morphology of decreases in free primer diffusion coefficient DQ.  A 
series of four 3D SPGM simulations were run for 100 cycles differing only in DQ, which was set at 20, 
2, .2, and .02 µm2/sec; standard values (Table 2 of main article) were used for all other parameters.  
Shown are R-Z plots of S and T after denaturing in cycle 40 from all simulations: (a) T concentration 
profiles are nearly identical for all simulations.  (b) S concentrations are more depressed in the polony 
interior as DQ diminishes.  (c) and (d): Superimposition of S and T from DQ = 20 with S and T from 
DQ = .2 (c) and .02 (d).   

Reference file: polony3D.DS_035.DQseries.outdata.xls

.035µm2/sec.  With the DQ = .02µm2/sec simulation from the prior series, in which DS had its 
standard value, we could now compare three simulations with varying DS at this low value of D
The results are in Figure F2.2-2. Unlike the prior simulation series in F2.2-1, in which D

Q.  

r 
s 

 

e 

 

lead to 

Q varied 
while DS remained the same, polony size and yield now does vary considerably across changing 
DS values, as polonies with a lower DS grow more slowly.  To aid comparison, we therefore 
synchronized this series by finding, for each cycle in a given simulation, the cycle in the othe
two simulations that had the same T yield after the PCR denaturing phase.  Figure F2.2-2 show
the S and T distributions for one set of cycles which are matched by T yield in which the DS=.035
(standard value) simulation data is taken from cycle 24, the DS=.0035µm2/sec simulation data 
from cycle 40, and the DS=.00035µm2/sec simulation data from cycle 99.  This means that the 
DS=.0035µm2/sec simulation is being examined after the standard number of cycles (40) and th
DS=.035µm2/sec simulation is being examined shortly after polony maturity.  Figure F2.2-2a 
shows that, for polonies of equivalent yield, lowering DS does indeed generate a polony with a
sharper edge.  Figure F2.2-2b shows the effect of the lower DS on the S concentration 
distribution.  Here, unlike the DQ series above (Figure F2.2-1), lowering DS appears to 
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increased S concentrations in the polony interior, but this is merely a consequence of looking at S 

at later cycles for series with lower DS so that S has had more time to build up.  

Figure F2.2-2:  Effect on polony morphology of decreases in free strand diffusion coefficient DS.  A series 
of three 3D SPGM simulations were run for 100 cycles differing only in DS, which was set at .035, 
.0035, and .00035 µm2/sec; DQ was set to .02 µm2/sec and standard values (Table 2 of main article) were 
used for all other parameters.  Shown are R-Z plots of S and T after denaturing cycles which showed 
closely matching T yields: cycle 24 for DS=.035µm2/sec, cycle 40 for DS=.035µm2/sec, and cycle 99 for 
DS=.00035µm2/sec: (a) T concentration profiles.  The polony edge is sharper when DS is lower.  (b) S 
concentrations are larger in the polony interior as DS diminishes because S is examined at later cycles for 
lower DS.  (c) and (d): Superimposition of S and T from DS = .0035 with S and T from DS = .035 (c) and 
DS = .00035  (d).    

Reference files: pub polony3D DQ 02 DSseries outdata xls and pub polony3D DQ 02 DSseries outtotals xls

 
 
2.3 1D TPIM: Analysis of ‘tunneling’ 
 
The phenomenon designated ‘tunneling’ in the main article refers to a situation seen in 1D TPIM 
simulations where the concentration of an invading tethered strand V appears to drop in the midst 
of the invaded T polony but then to rise again on the far side of the T polony.  An example was 
given in Figure 7d of the main article for polonies whose seeds were at +/- 4µm from the origin.  
There we mentioned that tunneling appears to reflect transient conditions in effect at the 
advancing T polony edge during the course of polony development that are preserved in the 
invading V spatial concentration profile.  Evidence of this assertion is offered in Figure F2.3-1.  It 
is seen that the spatial concentration profiles of T and invading strand V at cycle 40 reflect the 
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Figure 2.3-1: Analysis of 1D TPIM tunneling in relation to polony growth.  (a) Example of tunneling.  S, T, U, 
and V are shown after denaturing cycle 40 for a 1D TPIM simulation of polonies whose seeds were at +/- 
4µm from the origin (same situation as Figure 7d of main article).  Invading strand V is rising in 
concentration on the far side of the T polony at the dashed line, which represents where the T polony growth 
face was in cycle 30.  Square markers: T and V concentrations at this location.  (b) Graph depicting the 
location of the T polony growth face for each cycle, identified as the location at which the sum of PS and PU 
concentrations is maximal after every annealing phase.  Red markers: beginning and end of apparent linear 
range. Blue marker: location of polony growth face in cycle 30 corresponding to dashed line in (a).  (c) 
Depiction of  cycle 30 free strand S and U concentration profiles (after denaturing) with respect to PS and PU 
(growth face) profiles (after annealing).  For every cycle, the T growth face is taken to be contained in the 
region +/- 2.5µm from the location of maximum PS + PU concentration, indicated for this cycle 30 graph by 
dashed box.  (d) Blow-up of cycle 30 T growth face region (dashed box) in (c).  (e) Relation between amount 
of S and U in the T growth face to final cycle 40 spatial concentration profiles of T and V.  For every cycle, 
the amount of S and U in the T growth face region is computed, yielding Sg and Ug.  Within the linear region 
of (b), cycle is linearly related to a growth face location.  Using this relation, the cycle 40 T and V spatial 
concentration profiles (seen in (a)) can be expressed as a function of cycle and put on the common abscissa 
‘cycle’ with Sg and Ug.  Dashed line indicates cycle 30 and corresponds to the dashed line in (a), and the 
square markers correspond to the marked values of T and V in (a).  Sg and Ug at this line (see markers) are 
equal to the areas under the S and U curves depicted in (d).  The Sg curve drops along with T, and the Ug 
curve rises with V.  (f) The Sg and Ug curves of (e) are linearly rescaled to yield Sr = A⋅Sg + B and Ur = 
A⋅Ug + B, where A and B are found by least squares regression against the T and V values of (e).  A very 
close match of Sr to T and Ur to V is observed.  Regression solutions: A ≈ 0.345 and B ≈ 0.064. 

Reference file:  plny1De.DS_035.DQU20.c40.tba45.tbd30.dx_05.MPE3.4um.retest.hires.facedata.xls 
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amount of free strand S and U that was in the advancing growth face of the T polony at each 
cycle.  As described in the main article, the growth face comprises the small region at the edge of 
a mature polony at which new tethered strand is generated through hybridization during annealing 
of free strand with tethered primer.  In TPIM simulations, the two hybrid species PS and PU must 
be considered.  Figure F2.3-1 is consistent with the reasonable hypothesis that the rise of invading 
strand V on the far side of the T polony must be a result of a rising amount of U with respect to S 
in the growth face on the far side of the T polony over time, which allows an increasing amount 
of PU to form at the expense of PS as the polony grows.  This rising amount of U is preserved in 
the V spatial concentration profile at later cycles and exhibits the phenomenon of tunneling. 
 
What is not explained in this analysis is why U grows relative to S in the T growth face as the 
polony grows.  One idea is that when there is substantially more T than V interior to the edge of 
the T polony growth face, this allows more growth face S to be ‘wicked away’ into unproductive 
hybrid ST than growth face U into unproductive UV.  This may leave an increasing amount of U 
compared to T to be available to form productive hybrid PU vs. PS in the growth face, generating 
increasing concentrations of V compared to T in the growth face in subsequent replication phases.  
At this time, however, we have yet to confirm this hypothesis. 
 
 
3 Algorithm details 
 
The main work of the six polony models described in the article is to solve systems of diffusion 
and reaction-diffusion partial differential equations (PDEs).  The purpose of this section is to 
provide additional detail about the algorithms beyond the brief descriptions given in the article, 
and also to characterize the accuracy of these algorithms.  Accuracy was carefully examined 
because some of the results described in the article were counter-intuitive, e.g. ‘tunneling’ 
exhibited by 1D TPIM simulations.  We wanted assurance that these results were not due to 
numerical artifacts generated by the algorithms or our implementations of them.  
 
3.1 Implicit algorithms used by polony model packages 
 
Our main reference for PDE solution algorithms was (Ames, 1992), supplemented by (Press, et 
al., 1996).  Use was also made of (Crank, 1956) when PDEs involved polar coordinates.  Below 
we summarize the algorithms used in each of the six models.  Further details can be determined 
directly from the source code we have provided for each model on our supplemental web site 
http://arep.med.harvard.edu/polony_models/.   
 
PDEs below are described for simple diffusion equations for a generic concentration variable C 
with a diffusion coefficient D and a boundary value b.  The abbreviations dx, dz, dr, and dt refer 
to mesh sizes used to represent the continuous PDEs as finite difference equations.  Different 
combinations of mesh sizes are used in different models as described below.   
 
In the descriptions below, Polony Seed Initial Conditions refers to the concentration profile 
assigned to the initial single ST molecules used by the models; for TPIMs, these considerations 
also apply to initial single UV molecules.  The designation ‘standard initial conditions’ means the 
following: Let dV = the volume element appropriate to the models coordinate system; only 
models that use exclusively Cartesian coordinates are considered here so that dV = dx for 1D 
Cartesian simulations and dx2 for 2D Cartesian simulations.  For 1/dV ≤ iP, then ST is set to 1/dV 
at the seed location and P is reduced from iP to iP-(1/dV) at that location.  Under these 
conditions, ST is initialized to a pure discretized delta function at the seed location.  Where 1/dV 
≥ iP, a pure discretized delta function is not admissible and initialization is as described in Figure 
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F3.1-1.  In short, under these conditions, the initial condition is as close to a pure delta function as 
possible given the constraint that initial ST concentration must be everywhere ≤ iP.  
 
In every model, reaction-diffusion equations are solved by operator splitting as described in 
(Press, et al., 1996, chap. 19.3).  Thus, for a reaction diffusion equation of the form 
∂C/∂t = f(C,X…)+D∇2C, where f(C,X,…) is a function of C and other concentrations X at the 
given spatial coordinates, is solved by alternating between steps of time length dt of the simple 
diffusion equation ∂C/∂t = D∇2C and the equation ∂C/∂t = f(C,X…) (which involves no spatial 
derivatives). 

iP
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Figure F3.1-1: Standard initialization conditions for ST seed molecule when a pure delta function at the origin 
is insufficient.  P is decreased by the concentration of ST at every mesh point.   k is an integer and 0 ≤ θ < 
1. (a) 1D polony model.  (b) 2D polony model. 

 
 
 
3.1.1 SPGM 1D (polony1D)  
 
Solution space:  1D Cartesian variable x, discretized as x = i⋅dx where –xb ≤ i ≤ xb for integral 

values of i. 
 
Algorithm: implicit equations with a variable parameter λ..  λ = 0.5 corresponds to Crank-

Nicolson equations, λ = 1.0 corresponds to “O’Brien” equations described in (Ames, 1992, 
section 2.3, equation 2-33) and also to (Press, et al., 1996, chap. 19.2) (where, however, the 
name “O’Brien” is not cited).  The polony1D default is λ = 1.0. 

 
Equations: 
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Polony seed initial conditions: standard initial conditions (see above).   
 
 
3.1.2 SPGM 2D (polony2D)  
 
Solution space:  2D Cartesian variables x and y, discretized as x = i⋅dx where –xb ≤ i ≤ xb for 

integral values of i, and as y = j⋅dx where –xb ≤ j ≤ xb for integral values of j.  The variables x 
and y therefore have the same mesh size and bounds. 

 
Algorithm: Alternating Directions Method for two dimensions as described by (Ames, 1992, 

equations 5-77).   
 
Equations: 
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Polony seed initial conditions: standard initial conditions (see above).   
 
 
3.1.3 SPGM 3D (polony3D)  
 
Solution space: A single 3D radial coordinate r, discretized as r = i⋅dr where 0 ≤ i ≤ rb for integral 

values of i. 
 
Algorithm: implicit equations with a variable parameter λ. (see section on SPGM 1D above), but 

based on the polar coordinate difference equations from (Crank, 1956, equations 10.41 and 
10.42).  

 
Equations: 
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Polony seed initial conditions: The analog to standard initial conditions in this spherical geometry 

would be to use a delta function at the origin when 1/dV ≤ iP, and, otherwise, to spread out the 
initial ST molecule at concentration iP in the interior of sphere with a non-zero radius with 
any required remaining mass spread evenly over the spherical boundary. However, the above 
algorithm does not work at all with pure delta function initial conditions and so standard initial 
conditions cannot be used even when the 1/dV ≤ iP and no spreading out is necessary.  
Therefore standard initial conditions are abandoned entirely.  Instead, the initial ST molecule 
is treated as if it were placed at the origin as a pure delta function and allowed to diffuse until 
its concentration is everywhere less than iP.  P is then adjusted by everywhere subtracting the 
resulting ST concentration from P’s initial iP concentration value. We call this process ‘pre-
diffusion’.  Because the algorithm does not work with pure delta functions the result of ST’s 
pre-diffusion is computed directly using the appropriate theoretical Gaussian distribution 
(Berg, 1993, equation 2.8).  The pre-diffusion time is specified via a user parameter.  If it is 
not sufficiently large the concentration of P may be negative at the origin, and in this case, the 
algorithm signals an error and terminates. 

 
 
3.1.4 TPIM 1D (plny1De)  
 
PDE algorithm is identical with that of the SPGM 1D algorithm in polony1D described above. 
 
 
3.1.5 TPIM 2D (plny2De)  
 
PDE algorithm is identical with that of the SPGM 2D algorithm in polony2D described above. 
 
 
3.1.6 TPIM 3D (plny3De)  
 
Solution space:  3D cylindrical coordinates as given by a 2D radial coordinate r and a 1D 

Cartesian coordinate z, where r = i⋅dx where 0 ≤ i ≤ rb for integral values of i, and z = j⋅dz 
where –zb ≤ j ≤ zb for integral values of j.  The variables x and y therefore have the same 
mesh size and bounds. 
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Algorithm: Operator splitting as described in (Press, et al., 1996, chap. 19.3) applied to the 2D 

radial and Cartesian variable; i.e., each time step is processed as if diffusion took place first 
along the 2D radial variable and then took place for the Z Cartesian variable.  Diffusion for the 
2D radial variable uses a Crank-Nicolson version of (Crank, 1956, equations 10.36 and 10.37), 
while diffusion for the Z variable uses regular 1D Cartesian Crank-Nicolson equations 
(equivalent to the SPGM 1D equations E3.1.1-1 with λ = 0.5).  

 
Equations: Only the equations for the 2D radial coordinate diffusion are given here.  The 

equations for the Z coordinate are the same as E3.1.1-1 with λ = 0.5. 
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Polony seed initial conditions: Unlike the 3D SPGM radial diffusion equations of polony3D, 

these finite difference equations do support delta functions at the radial origin.  However, in 
cases where iP ≤ 1/dV, it is still necessary to spread the initial ST and UV density out beyond 
the seed locations themselves.  The 3D cylindrical analog for standard initial conditions would 
create cylinders about the seed locations in which ST (UV) had constant concentration iP, and 
smaller concentrations along its borders, but these calculations are inconvenient and, given 
that the dr and dz coordinate mesh sizes are independently settable, they could lead to slightly 
different geometries from simulation to simulation.  Therefore, as with 3D SPGM, standard 
initial conditions are again abandoned and a pre-diffusion approach is used.  Therefore, in this 
model, since pure delta functions are supported, for each of ST and UV, a mass of 1 is placed 
at the seed location and the diffusion algorithm is run until the concentration at the seed 
location is ≤ iP.  Here pre-diffusion is entirely automatic and does not require setting of a 
parameter as in the case of 3D SPGM. The resulting distributions are subtracted from the P 
distribution.  The diffusion coefficient DS is used for both the ST and UV, generating 
equivalent initial spatial distributions. 

 
 
3.2 Algorithm accuracy 
 
As noted above, we carefully examined algorithms for accuracy to provide assurance that results 
that appeared to be counter-intuitive were not due to artifacts in the algorithms. 
 
The following means were generally used for testing algorithm accuracy:  Test A: We attempted 
to verify that application of the algorithm to a pure diffusion problem with a known theoretical 
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solution obtained results that are compatible with the solution.  Generally this meant running the 
algorithm on an initial delta function, a problem whose theoretical solution is a Gaussian 
distribution.  Since the first denaturing cycle of polony simulation results in the diffusion of a 
single S molecule, it is often possible to simply check the results of this cycle. Generally, we 
verified that graphs of computed and theoretical results superimpose well, but sometimes also 
examined numerical measures of accuracy (these are not straightforward because there is no 
simple numerical measure of overall accuracy).  Test B: We could also verify that total S mass is 
conserved after denaturing cycles.  Test C: We reran simulations with smaller spatial mesh sizes 
and verified that graphs of predicted molecule concentrations superimpose well and that changes 
in yields are small.  This method was used to identify the mesh sizes used for most figures in the 
article.  
 
The temporal mesh size dt was generally set to .01 sec.  This was determined during very early 
testing of the first polony models by comparing the results of C code against a version coded in 
Mathematica 3.0 (Wolfram Software; Champaign, IL) (Figure F3.2-1).  As Mathematica uses 
another PDE algorithm (the Method of Lines, according to Mathematica documentation), this 
comparison also helped establish that the implicit algorithm used in the C polony model was 
functioning correctly.  

Comparison of Mathematica (M) and C program with 
O'Brien algorithm with dt=.5(C-.5) and dt=.01(C-.01) results 

for P after every 10 annealing cycles (tba=5,tbd=30)
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Figure F3.2-1: Comparison of 
results of early version of 
polony1D (1D SPGM) with 
Mathematica 3.0 implementation 
of model.  Shown are the 
concentration profiles of P 
(tethered primer) after every 10 
annealing cycles (where 
annealing time = 5 seconds).  C 
program values with dt = .01 (C-
.01) almost superimpose with the 
Mathematica results (M) whereas 
C program values with dt = .5 do 
not superimpose as well (C-.5). 

polony1D.DS_035.DQ20.tba5.tbd30.c40.dt_01.compare.xls 

 
An example of Test A is given in Figure F3.2-2.  This figure overlays the initial S diffusion cycle 
as computed in the 3D TPIM (plny3De), the most demanding algorithm of all six, with the 
theoretically computed Gaussian. 
 
When all is said and done, only Test A truly ensures that algorithm accuracy, as only this test 
shows that predicted results accord with theoretically correct results.  Test B is at most a 
prerequisite for accuracy, and Test C is really a test of algorithm precision.  As a test for 
accuracy, Test A is limited because it only demonstrates accuracy in one set of conditions that is 
only found at most once in the course of polony simulation. Therefore, in the end, Test C bears 
most of the burden for deciding the quality of a simulation, and precision is effectively a stand-in 
for accuracy.  Several examples of Test C are given in section 3.4. 
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cba 

Figure F3.2-2: R-Z contour plots of S after the first denaturing cycle of a 
plny3De TPIM 3D simulation.  The ST seed molecule was at +4 µm on the Z-
axis.  (a) Computed distribution.  (b) Theoretical Gaussian distribution.  (c) 
Superimposition of a and b. 

plny3De.dr_05.rb200.dz_25.zb80.c40.z1.16.cyc1.erranalyze.fig 

 
3.3 Dynamic rescaling 
 
We developed dynamic rescaling logic to reduce the performance requirements needed to support 
accurate simulation of polony evolution in models requiring multiple spatial coordinates: 2D 
SPGM (polony2D) and TPIM (plny2De), and 3D TPIM (plny3De).  Processing of multiple 
spatial coordinates is intrinsically expensive compared to single spatial coordinates, and is 
additionally penalized by generally requiring smaller spatial mesh sizes than single spatial 
coordinate models to achieve good accuracy. 
 
The problem that motivated dynamic rescaling is this: Polonies begin with a single seed molecule 
in a small volume but grow to have dimensions perhaps 100x larger over the course of 40 cycles.  
To accurately capture the spatial characteristics of molecular species concentrations in early 
cycles requires small spatial mesh sizes dx, dz, or dr (depending on the model).  However, 
because the polony is much larger at the end of 40 cycles, the models therefore require large 
solution space bounds xb, zb, or rb.  This is intrinsically inefficient.  While the polonies are small, 
it is only near the origin that concentrations differ meaningfully from initial conditions, so all the 
calculations expended on computing concentrations away from the origin generate information of 
no value.  Later on, when the polonies are large, calculations away from the origin do generate 
important information, but the small mesh sizes maintain this information at a spatial resolution 
that is finer than needed. 
 
These considerations apply to all polony models, whether they use single or multiple spatial 
variables.  But single spatial variable models (1D SPGM (polony1D) and TPIM (plny1De) and 
3D SPGM (polony3D)) perform well enough that the overhead of these wasted calculations is not 
onerous.  However, for multiple spatial variable models, the overhead is prohibitive. Early results 
indicated that a 3D TPIM simulation using standard parameters with mesh sizes suitable for good 
accuracy could take over 10 days to run on a ~933 MHz machine.  With dynamic rescaling, most 
of these simulations now take on the order of 4-8 hours. 
 
The basic idea of dynamic rescaling is simple:  Rather maintain a small spatial mesh size with a 
large solution space, use a solution space with a fixed, modest number of mesh points and 
increase the size of the mesh distances as the polony grows.  For example, in a 2D SPGM 
simulation, rather than use a mesh size dx = .25µm but maintain an xb = 300 to ensure that the 
~50µm radius polony generated at cycle 40 is adequately supported (including room to keep the 
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polony well away from the boundary to ensure that PDE boundary conditions are met)—an 
arrangement that would require a solution space containing 6012 coordinate pairs—start, instead, 
with dx=.25µm and maintain xb = 80 over the course of the simulation (for a space of 1612 
coordinate pairs) by increasing the size of dx as the polony grows to achieve the same result with 
only 7% of the work ((161/601)2).   
 
Dynamic rescaling is controlled through four parameters: 
 
threshold: a magnitude that is used to identify the edge of the polony.  It defines the concentration 

of S (or, in TPIMs, S or U) above which a point in solution space is considered to be within 
the polony.   

trigger: a fraction of a coordinate boundary that is used to direct when rescaling is to take place 
after a denaturing cycle.  Continuing the 2D SPGM example above, where xb = 80, after each 
denaturing cycle, the algorithm looks for the largest absolute value of an x or y coordinate 
whose S value exceeds threshold, and computes the fraction between this value and 80.  If this 
fraction exceeds trigger, a rescaling operation is initiated.   

abort: When, after a certain denaturing cycle, fractional coordinate bounds are found to exceed 
trigger, it means that the polony has grown large enough to cover a substantial portion of 
solution space.  A rescaling operation is then needed to give the polony more growing room so 
as to keep it away from the solution space boundary.  However, it is also possible that when 
the polony first exceeds trigger it may already have come so close to the boundary to violate 
the safe distance needed to ensure diffusion equation boundary conditions.  The abort value is 
a threshold fractional coordinate bound beyond which the polony is considered to have grown 
too close to the boundary and the simulation should be considered invalid:  If the fractional 
bound exceeds abort, the simulation is terminated.     

multiplier: When a polony has a fractional coordinate bound that exceeds trigger, but not abort, it 
is time to rescale the mesh size.  This is accomplished by adjusting each spatial coordinate 
mesh size by a factor of multiplier, and then, for each concentration variable, window-
averaging the concentration values with multiplier as a window size.  
 

Values of these dynamic rescaling parameters have been determined by experimentation and 
testing as described in section 3.4.  In general, we use a threshold of 1e-4, a very conservative 
definition of the polony edge even in early cycles when concentration magnitudes are very small, 
and a multiplier of 2.  Trigger and abort values differ from model to model.   
 
Continuing with our 2D SPGM example above, in the first cycles, dx = .25µm and solution space 
covers a square from -20µm to 20µm in both x and y coordinates.  Assume that trigger is .5. 
After enough cycles, the polony edge as defined by threshold will eventually move beyond 10µm 
from the origin and the trigger condition will be satisfied.  At that point, the mesh size will be 
doubled so that solution space will cover a square from -40µm to 40µm in both x and y.  The 
concentrations within the -20µm to 20µm square actually occupied by the polony are obtained by 
window-averaging the old values.  Values in the -40µm to 40µm square outside of the interior 
-20µm to 20µm square are set to appropriate initial values (iP for P, eQ for Q, and 0 for all other 
variables). 
 
Dynamic rescaling entails an intrinsic but small loss of accuracy due to the window averaging 
because, after rescaling, old concentration values must be represented on a mesh with half the 
resolution they had prior to rescaling.   However, a more subtle effect arises in the 3D TPIM 
because window averaging of the 2D radial coordinate also leads to a loss of mass.  This problem 
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does not arise for Cartesian coordinates, and therefore does not arise in 2D simulations using 
dynamic rescaling or the 3D TPIM z-coordinate.  The extent of this loss of mass is characterized 
in the following Theorem. 
 
Theorem
 
Assume a molecule subject to radially symmetric 2D diffusion whose concentration C is at radial 
mesh point coordinates 0, 1, 2, … N is C(0), C(1), C(2) …, C(N), for which the radial mesh size 
is dr.  Assume as well that these initial mesh coordinates are subjected to rescaling as described 
above with a multiplier of 2, resulting in a new set of concentrations C(0'), C(1'), C(2') …, C(N'), 
where here the notation C(k') means the concentration of the molecule at rescaled mesh 
coordinate k.  Then rescaling will result in a loss of mass of ((π*dr2)/5)*(C(0)/4 + C(1)).   
 
Proof 
 
The proof of this theorem depends on another proposition:  Given a variable C that is subject to 
diffusion in a 2D radially symmetric solution space, mass must be calculated according to 
formula E3.3-1 in order that diffusion conserve mass: 
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I give a proof of E3.3-1 in section 3.5 below.  This result is entailed by the particular finite 
difference equations I have used to implement the diffusion equations.  A different finite 
difference approximation would lead to a different formula. 
 
One way of viewing E3.3-1 is to take it as defining the elements of area that must be used to 
integrate concentrations over the plane to calculate mass.  The coefficient of the first term, 
π*dr2/4, is the area of a circle of radius ½dr.  Subsequent coefficients 2π*(k*dr)*dr are the finite 
difference approximations to the differential elements of area 2πr*dr that would be applied to 
radial integration of continuous radially symmetric functions over the plane.  These specifications 
of element of area can be conveniently described as saying that the concentration C(k) at the 
radial mesh point with coordinate k > 0 is considered to be evenly spread over the interval k-½  to 
k+½ , while C(0), the concentration at the origin, is considered to be spread over the half interval 
0 to ½.  This is diagrammed for both initial and rescaled coordinates in Figure F3.3-1 below.  
Ultimately, it is this different treatment of the origin compared to any other mesh point that leads 
to the loss of mass caused by rescaling. 
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0' 
rescaled coordinates 

3' 2'1' 

radial axis 

1 42 3 50 6 
initial coordinates 

Figure F3.3-1: Division of radial axis into intervals corresponding to mesh point 
coordinates for both initial and subsequently rescaled coordinates.  Thick vertical bars on 
radial axis correspond to intervals of length dr, the mesh size of the initial coordinates.  
Below, intervals corresponding to initial mesh points are centered on the initial 
coordinates (indicated by double arrows) and extend to the thin vertical lines on either 
side of the thick ones on the central axis, except for the interval about the origin.  Above, 
rescaled coordinates and their intervals after rescaling is performed with multiplier 2. 

 
This division of the radial axis into intervals shows how window-averaging must be performed 
during rescaling.  Mesh point k' > 0 in the rescaled coordinates corresponds to mesh point 2k in 
the initial coordinates and is associated with an interval that extends from 2k-1 to 2k+1 on the 
initial scale.  This includes the full interval surrounding initial coordinate 2k, but only ½ the 
intervals for 2k-1 and 2k+1, e.g. rescaled coordinate 1' covers the full interval of initial coordinate 
2 but only ½ of each of the intervals around initial coordinates 1 and 3.  The amount of material C 
in the interval around rescaled coordinate k' is therefore    
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Therefore the window-averaged concentration C(k') for rescaled coordinate k'  is given by 
formula E3.3-2 

 
 
 

 
For the origin (k'=0), another formula applies. The interval around 0' contains the complete 
interval for initial coordinate 0 and ½ the interval around initial coordinate 1.  The interval around 
0' therefore contains a mass of  
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in an area of πdr2(1/4 + 1) = 5πdr2 /4, for the rescaled concentration given in E3.3-3: 
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These formulas describe the window-averaging that is required to compute the concentrations at 
rescaled coordinates.  Now I will consider the total mass in the plane.  For the initial coordinates I 
will call this quantity M.  Its value, as computed using formula E3.3-1, is: 
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In rescaled coordinates, mass M'  will be calculated by the same expression except for use of 
primed coordinates, where here dr' = the mesh size of the rescaled coordinates:  
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However, here dr' = 2*dr, and therefore dr' 2 = 4dr2.  Therefore, dividing E3.3-4 and E3.3-5 by 
πdr2 , we get: 
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The formulas E3.3-2 and E3.3-3 allow each of the C(m') terms in M'/πdr2 to be expressed as a 
weighted sum C(i) terms for some set of i, and thereby allow comparison of M/πdr2 and M' /πdr2.   
 
Consider first any initial mesh coordinate 2k for k>0 and consider the amount of C(2k) in M'.  By 
E3.3-2, only C(k') will contribute C(2k) to M' , and C(k') contributes exactly 2kC(2k)/(4k) = ½ 
C(2k).  But by E3.3-7, C(k') has a coefficient of 8k in M'/πdr2 , so the coefficient of C(2k) in 
M'/πdr2  is ½ 8k = 4k = 2*2k.  But by E3.3-6 this is exactly the coefficient of C(2k) in M/πdr2. 
 
Now consider any initial mesh coordinate 2k+1 for k>0. The term C(2k+1) is contained in both 
C(k') and C((k+1)').  C(k') contains the term (1/(4k))((2k+1)/2)C(2k+1), and has coefficient 8k in 
M'/πdr2 , for a total C(k') contribution of (2k+1)C(2k+1).  Likewise, C((k+1)') contains the term 
(1/(4(k+1))((2(k+1)-1)/2)C(2(k+1)-1) = (1/(4(k+1))((2k+1)/2)C(2k+1), and has a coefficient of 
8(k+1) in M'/πdr2 , for a total C((k+1)') contribution of (2k+1)C(2k+1).  Thus, the amount of 
C(2k+1) in M'/πdr2  is ((2k+1) + (2k+1))C(2k+1) = 2(2k+1)C(2k+1), and this is again exactly the 
amount of C(2k+1) in M/πdr2.  

 19



 
Thus, M'/πdr2  and M/πdr2 contain identical amounts of C(m) for m>1, and the difference between 
them concerns only C(0) and C(1).  The only contribution of C(0) in M'/πdr2 comes from C(0'), 
and by E3.3-3 the coefficient of C(0) in C(0') is 1/5.  As the coefficient of C(0') in M'/πdr2 is 1, 
there is (1/5)*1C(0) = C(0)/5 in M'/πdr2.  Meanwhile by E3.3-6, M/πdr2 contains C(0)/4.  
Contributions to the C(1) term in M'/πdr2 come from both C(0') and C(1'); specifically, C(0') 
contributes (4/5)C(1) and C(1') contributes C(1)/8, and these are weighted by coefficients of 1 
and 8 respectively in M'/πdr2, leading to a total of (1*(4/5) +8*(1/8))C(1) = (9/5)C(1) in M'/πdr2. 
Meanwhile, there is 2C(1) in M/πdr2 by E3.3-6.  Therefore, 
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QED. 
 
Immediate consequences of this result are:  
 
• M ≥ M' .  I.e., mass is never gained during rescaling, but can only be lost. 

• Rescaling can only cause loss of mass at mesh points 0' and 1', i.e., loss at the origin and one 
mesh point away, and never further away. 

• The amount of mass loss is O(dr2) and so can be reduced by reducing dr.  However, an 
important exception to this is when C is a delta function at the origin, so that reducing dr 
results in a compensating increase in C(0).  In such a case, C(0) = 4/(πdr2 ) and C(k) = 0 for 
k>0 (this integrates to 1 under formula E3.3-1).  Rescaling under these circumstances leads to 
M' = 4/5 by E3.3-8. 

 
This last result can easily arise in 3D TPIM simulations.  If, on simulation initialization, ST is 
assigned a delta function, it immediately dissociates into a molecule of S and a molecule at T at 
the beginning of the first denaturing cycle.  S then diffuses, but T, being tethered, does not diffuse 
and remains a delta function.  If the solution space is small, S may diffuse far enough to trigger a 
rescaling operation.  The resulting loss of mass may not be large for S, as by diffusion much of its 
mass will have drifted away from the origin during the denaturing cycle.  But T remains a delta 
function and undergoes the mass loss just described, resulting in a mass of 0.8 after rescaling.  It 
was observation of this mass loss effect, and the difficulty of reducing it by reducing dr, that led 
us to work out the mathematics above.   
 
We compared mass differences computed by the E3.3-8 for S1d before and after rescaling from 
an actual 3D TPIM simulation and found the differences between M-M' computed from E3.3-8 
and directly to be the same up to ~1% error (0.0005948 via E3.3-8 vs. 0.0005883 by direct 
computation).  As the formula should be exact, a 1% error is surprising, but the direct 
computation involves a large number of calculations with small numbers and the error is likely a 
result of round-off error. (Reference file: 
outdata.dr_1.rb100.dz1.zb10.cyc2.R.rrs.S1d.S1s.check.xls) 
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The three main ways of reducing the problem of mass loss at the origin are: 
 
(a) Keep reducing dr.  Although as noted above, reducing dr does not reduce mass loss at 

initialization time so long as ST remains a delta function, once dr becomes sufficiently small 
a pure delta function initial condition for ST becomes impossible and mass must be spread 
into a region around the origin (see section 3.1).  If dr is small enough, very little mass 
remains at the origin itself and mass loss becomes insignificant.   

(b) For a given dr, increase the number of mesh points by increasing rb, effectively increasing 
the size of solution space.  This gives the growing polony more room and effectively allows 
rescaling to be delayed until the polony is larger.  Mass loss will still affect the origin when 
rescaling eventually occurs, but as a larger polony has more mass distributed away from the 
origin than a smaller one, and rescaling does not affect such mass, a larger amount of mass is 
correctly conserved. 

(c) Increasing the trigger parameter for rescaling also delays rescaling and has a similar effect to 
(b). 

 
 
3.4 Simulation and robustness of results computed with dynamic rescaling 
 
As noted in section 3.3, we developed dynamic rescaling to make simulations based on polony 
models using multiple spatial coordinates possible in practical amounts of computer time.  
However, as also noted in section 3.3, dynamic rescaling can introduce inaccuracies into 
simulation results, most notably a loss of mass in 3D TPIM simulations.  We therefore assessed 
the impact of rescaling on simulation results on several features of polonies described in the main 
article.  The observations presented here show that the impact of rescaling is generally small. 
 
Generally, our method for assessing the impact of rescaling has been a variant of Test C of 
section 3.2, defined there as a comparison of results from two simulations that are the same 
except for having different mesh sizes.  The variant applied to dynamic rescaling simulations is to 
compare the results of simulations that have the same mesh sizes but different solution space 
sizes.  The reason this works is that in dynamic rescaling simulations mesh sizes are increased  
when the polony grows sufficiently close to the solution space boundary; therefore, mesh sizes 
don’t increase as often in simulations with larger solution spaces, maintaining them at finer 
average spatial resolution over the course of the simulation.  These simulations will also tend to 
undergo fewer rescalings, exposing them less to any biases introduced by rescaling, and they will 
undergo their first rescalings at later cycles, reducing any amplification of any biases introduced 
early in the simulation when the polonies are very small.   
 
3.4.1 3D TPIM polony interaction geometry 
 
The complex geometry of polony invasion is described in the main article.  In 3D TPIM 
simulations (e.g., Figure 6 of main article), invasion contours indicate less invasion density near 
the z-axis vs. away from it.  As one of the biases of dynamic rescaling is a loss of mass near the z-
axis, the possibility exists that this apparent feature of 3D TPIM invasion could be the result of a 
artifact introduced by the dynamic rescaling procedure. Therefore we explored the degree to 
which this geometry might depend on dynamic rescaling.  The close conservation of the geometry 
in two simulations, one of which used a larger solution space, is seen in Figure F3.4.1-1, and 
suggests that these results are not artifactual.  That similar geometry is seen in 2D TPIM 
simulations (Figure 7 of main article) which use only Cartesian coordinates and therefore are not 
subject to loss of mass under rescaling, is additional evidence for this conclusion.  The simulation 
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with the larger solution space features slightly steeper gradients compared to the one with the 
smaller solution space, with contours compressed into a slightly smaller area, and appears to shift 
the polony very slightly towards Z=0. 

plny3De.4um.rb425_rb200.zb_115_zb80.R_8_95.compare.ovlp.fig 

Figure F3.4.1-1: Geometry of polony invasion for two polony seeds at +/- 4µm on the z-axis, as 
shown by contour maps of S and T after denaturing cycle 40 (S40d and T40d), as shown in two 
simulations, one with a solution space of 201 radial and 161 z-axis mesh points (red, rb200/zb80) 
and the other with 426 radial and 231 z-axis mesh points (blue dashed, rb425/zb115).  The 
rb425/zb115 simulation ran with an average mesh size ~ 2x finer than the rb200/zb80 simulation, 
and underwent two rescalings (cycles 12 and 36) vs. three rescalings (cycles 4, 11, 24).    

 
3.4.2 3D TPIM measures of polony yield and exclusion 
 
Loss of mass during dynamic rescaling in 3D TPIM simulations may be viewed as a penalty paid 
for accurate preservation of concentrations.  Since the equations of polony models feature only 
concentrations and not masses, and rescaling preserves these accurately, the close correspondence 
between concentration profiles seen in the two simulations compared in Figure F3.4.1-1 may not 
be surprising, and we might expect to see more divergence when comparing yields.  We therefore 
compared yields of molecular species computed by the two simulations described in F3.4.1-1 at 
various cycles.  The results are shown in Figure F3.4.2-1. 
 
Total masses, computed over the full 3D solution space, show a low degree of relative error that 
rises over the course of the simulations (Figure F3.4.2-1a, diamond markers).  Shown are relative 
errors both for not only the strand species S and T generally taken to indicate polony yield, but 
also the generative species PS and QT found in growth faces after annealing phases (see main 
article).  The relative error exhibited by these full-space yields generally rises over the course of 
the simulations and reaches a maximum relative error in cycle 40 that is < 1.7%.  The rise in 
relative error indicates that the coarser resolution simulation (rb200) exhibits a small but 
increasing tendency to overestimate yields compared to the finer resolution simulation (rb425) 
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As described in the main article, half-space yields are useful numerical measures of the degree of 
polony infiltration and are used to compute the VVT measure of polony invasion.  In the 
simulation of F3.4.1-1, the T polony ‘owns’ the positive half space z>=0, here denoted ‘z+’, and 
the V polony owns the negative half space (z<=0).  Figure F3.4.2-1a shows that the relative error 
for half-space yields tends to exhibit the opposite trend compared to full-space yields: the coarser 
resolution simulation (rb200) shows an increasing tendency to underestimate them compared to 
the higher resolution one (rb425).  Half-space yields of species for the polony that owns the half-
space (Figure F3.4.2-1a, square markers) tend to be underestimated less than those for invading 
species (Figure F3.4.2-1a, triangular markers).  By cycle 40 the greatest absolute relative error for 
any of these half-space yields is modest at < 2.4% (QV40a: -2.39%).  These relative error 
computations are quite sensitive to how the values at z=0 are figured in (see F3.4.2-1 legend for 
definition of z+ half-space yield).  
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Figure F3.4.2-1:  Precision of 
yields computed from 3D TPIM 
simulations compared in Figure 
F3.4.1-1 (rb425 and zb115 vs. 
rb200 and zb80).  

 
(a) % error for yields or yield ratios 
for various molecular species every 
10 cycles over the full 3D solution 
space (full) or the z>=0 half-space 
(z+). The % error for X is 
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where γ(z)=1/2 for z=0 and 1 
otherwise (also see section 3.5).  Sd, 
Td, Ud, Vd = species yields after 
denaturing phase; PUa, PUa, QTa, 
QVa = species yields after 
annealing phase; VVT = 
Vd/(Vd+Td); TVT = Td/(Vd+Td); 
diamond markers = full space 
yields; square markers = z+ yields 
for species associated with the T 
polony; triangular markers = z+ 
yields associated with the V polony.
 
(b) V/(V+T) in the z+ half space 
after every 10 denaturing cycles for 
the two simulations.  The % error 
between corresponding V/(V+T) 
values is the VVT:z+ line in (a) 
(dashed line). 

 
Figure 3.4.2-1b compares the z+ half-space VVT measure for these two rescaling simulations.  
The relative error for this quantity, shown in Figure 3.4.2-1a (dashed line, VVT:z+), is higher 

 23



than for any individual half-space yield, although it appears to be declining as cycles progress.  
Despite the relatively high degree of error, however, the VVT graphs for the two simulations in 
F3.4.2-1b show a very orderly relation.  As also indicated by the consistently positive relative 
error in F3.4.2-1a, F3.4.2-1b shows that the coarser resolution simulation (rb200) consistently 
overestimates the amount of invasion by a neighboring polony compared to the finer resolution 
simulation (rb425), but not by much. 
 
  
3.4.3 2D SPGM yields 
 
We also examined the accuracy of the two 2D SPGM simulations used for the SPGM yield 
analysis described in Figure 4b of the main article.  The two SPGM simulations are identical 
except that one considers the polonies to be growing in a 1µm thick 2D gel while the other 
considers them to be growing in a 10µm thick 2D gel. To assess the accuracy of these 
simulations, each was run twice, one with x and y spanning mesh points with coordinates 
between –80 and 80 (xb80), and the other with these variables spanning mesh points between –
160 and 160 (xb160).  Both used an initial mesh size dx = .25µm. Information on the simulations 
is given in Table T3.4.3-1.  These were 100 cycle simulations and therefore ran ~2.5x as long as 
standard 40 cycle simulations. 
 
 

thickness↓ \ 
resolution→ 

xb80 xb160 

1µm hh:mm:ss = 10:39:07 
rescalings: 5, 13, 28, 56 

hh:mm:ss = 43:23:30 
rescalings: 12,28,57 

10µm hh:mm:ss = 10:40:10 
rescalings: 5, 13, 28, 55 

hh:mm:ss = 43:24:04 
rescalings: 12,28,57 

 
Table T3.4.3-1: Run times (hh:mm:ss) and cycles in which rescalings occurred in 2D SPGM 

performed on 1Ghz processors.  
 
Results of the comparison of corresponding xb80 and xb160 simulations are shown in Figure 
F3.4.3-1.  It is clear that each rescaling operation results in a jump and subsequent increase in the 
amount of divergence between the two simulations.  However, even at cycle 100, the divergence 
between yields when assessed on a log10 scale is very small; it is more sizeable but still modest 
when yields are assessed directly (with a maximum deviation of ~14%).  Similar to what was 
observed for yields in the 3D TPIM comparison in Figure F3.4.2-1a, the coarser mesh resolution 
consistently overestimates yields compared to the finer mesh resolution.   
 
 
3.4.4 2D polony yield power-law regressions 
 
We also performed the windowed power-law regressions (see main article and legend for F3.4.4-
1) specifically shown in Figure 4b of the main article for the xb80 and xb160 2D SPGM 
simulations described in Table T3.4.3-1.  The results are seen in Figure F3.4.4-1a, where it can be 
seen that at xb80 resolution the power-law exponent (B) is visibly affected by rescaling 
operations.  At xb160, the effects are much less.  Also of note is that the other parameters solved 
by the regression (A and C) are even more sensitive to rescalings than the exponent (B) (see 
Figure F3.4.4-1b).   
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Because of the sensitivity exhibited by the xb80 results, the xb160 results were used in the main 
article.  However, we note that these were non-standard 100 PCR cycle simulations that were run 
specifically to discover long term yield trends beyond the standard 40 PCR cycles.  If we limited 
our analysis to 40 cycles, the xb80 and xb160 yield results would be equivalent. 
  

Figure F3.4.3-1:  Sensitivity of 2D 
polony growth yields to 
rescaling parameters 

 
(a) log10(S) and log10(T) for the four 
2D SPGM simulations described in 
Table T3.4.3-1.  The yield curves of 
corresponding variables in the xb80 
and xb160 simulations are 
superimposed, indicating good 
precision at the coarser xb80 
resolution. 
 
(b) % error of the xb80 log10(S) 
and log10(T) values with respect to 
the same values in the finer mesh 
xb160 simulations. % error of X = 
(Xxb80 – Xxb160)/Xxb160⋅100.  As can 
be seen, % error jumps at each of 
the cycles during which there was a 
rescaling (see Table 1), indicating 
that the two simulations diverge 
when a rescaling operation takes 
place.  After %error jumps, its curve 
then also shows an increased slope.  
T values exhibit larger % error than 
S values.   % error values shown 
here are all very small and < 1% by 
cycle 100.  However, these values 
are computed from log10s of S and 
T.  When % error is computed 
directly from S and T values, % 
error of S and T at cycle 100 ≈ 10% 
and 14%, respectively, and ≈ 2.3% 
and 2.8% at cycle 40. 
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3.4.5 2D polony geometry 
 
Figure F3.4.5-1 shows contour maps of S after denaturing in cycle 40 and in cycle 100 for the two 
2D SPGM simulations described in Table T3.4.3-1.  Consistent with observations made in section 
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3.4.4 above, there is much less divergence of polony geometry at cycle 40 than there is at cycle 
100, again indicating that standard 40 cycle simulations at xb80 exhibit good precision at this 
coarser mesh size. 

 

Comparison of power-law exponents of T yield for lower 
(xb80) and higher (xb160) resolution simulations and for 1 
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Figure F3.4.4-1: Effect of rescaling on power-law regressions of log10(T) yield curves for the 2D SPGM 
simulations described in Table T3.4.3-1.  (a) Power-law exponents derived as B solution values to 
regressions of the form log10(T) = A+B*log(C*cyc) performed over windows of 10 cycles.  The 
xb160.1um.B and xb160.10um.B curves are identical to the curves in Figure 4b of the main article 
but are here supplemented with the corresponding xb80 curves.  The xb80 curves show an upward 
kink starting around cycle 45 and stretching for ~10 cycles that is a result of the rescaling operation at 
cycle 55.  As regressions are done in windows of 10 cycles, the effect of the rescaling is first taken 
into account in the window starting at 45.  The ‘kink’ also offsets the B curves upward compared to 
xb160 B values, after which they resume their decline.  No such ‘kink’ is visible in the xb160 B 
curves in the same region despite a rescaling at cycle 57.  (b) Example of a regression on one series 
(xb80, 10µm gel) showing that the other regression parameters A and C are more affected by 
rescaling than B. 

(a) 

 

(b)

polony2D.dx_25.xb80.c100.2.thick10.outtotals.xls 

 
3.4.6 Possible source of inaccuracy in 2D SPGM simulations 
 
The 2D SPGM simulations described in Table T3.4.3-1 are performed in a model that employs 
only Cartesian coordinates and are therefore not subject to the loss-of-mass bias characterized for 
3D TPIM simulations (section 3.3).  The question therefore arises: What causes the divergence 
between the 2D SPGM xb80 and xb160 results.  One answer may be that the divergence merely 
affects the increased accuracy of the (on average) finer mesh used by the xb160 simulation.  But 
while this may indeed account for some divergence between xb160 and xb80 results, Figures 
F3.4.3-1 and F3.4.4-1 indicate that divergence is specifically introduced by rescaling operations.  
One possible cause of this is the effect of rescaling on the distribution of Q (free primer).   
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Figure F3.4.5-1: Effect of 
rescaling on 2D polony 
geometry.  (a) 
Superimposition of contour 
maps of S after denaturing 
in cycle 40 for the xb80 
and xb160 2D SPGM 
simulations described in 
Table T3.4.3-1.  (b) Super-
imposition of contour maps 
for the same simulations 
for S after denaturing cycle 
100. 

 
Contours superimpose 
better at cycle 40 than they 
do at cycle 100, consistent 
with other observations 
that divergence increases 
with more cycles.  Another 
interpretation is that 
contours in (b) within the 
spatial region depicted in 
(a) show better 
superimposition than 
contours outside of the 
region, which developed 
after cycle 40.  (Note the 
different scales in (a) vs. 
(b) reflecting the larger 
polony size in (b)). 

 

(a) 

(b) 

polony2D.dx_25.xb80.xb160.10um.cyc100.2.compare.S100d.fig 

polony2D.dx_25.xb80.xb160.10um.cyc100.2.compare.S40d.fig 

 
Q is not examined by rescaling logic, only S (and sometimes U) (see section 3.3).  This is done 
for practical reasons.  S (and, where applicable, U) increases sharply from negligible values at the 
edge of a polony, making it easy to use S to determine where the polony edge is and, by this 
means, consistently and predictably control the times at which rescaling operations occur.  By 
contrast, in 2D simulations, Q exhibits a bowl-shaped concentration profile that is high at the 
edge of solution space (where there is a source of Q) and which is only gradually diminished as 
one moves towards the center of the space (see Figure F3.4.6-1).  This makes it difficult to define 
a threshold that can consistently and predictably be used to trigger rescaling. 
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But, by this same token, rescaling has a more substantial impact on Q than on other polony 
molecules.  Except for P, rescaling affects all molecules other than Q by moving a solution space 
boundary at which the molecules have zero concentrations through a large region of surrounding 
space that is also empty of these molecules.   P, by contrast, is at an initial constant non-zero 
concentration at the solution space boundary, and this boundary is extended to include a larger 
region of space with this same non-zero concentration of P.  In either case, for all molecules 
except Q, rescaling should have no direct effect on the concentrations or dynamics of these 
molecules.  But rescaling has a direct impact on Q because it effectively removes the Q source at 
the solution space boundary to a greater distance away from the polony.  This changes the 
dynamics of the way the Q source feeds the polony, thereby indirectly affecting further polony 
evolution (Figure F3.4.6-1).  (How it should affect the polony is harder to predict. In a smaller 
solution space, more frequent rescaling will more frequently remove the Q source away from the 
polony, but by the same token, the polony will more frequently come closer to the source.) 

If rescaling has an impact on simulation results due to its effect on Q concentrations, it may not 
be accurate to consider this a “distortion” imposed by rescaling, because the identification of the 
solution space boundary as a source of Q is itself an idealization of what goes on in actual polony 
gels.  In reality there is no Q source that maintains a constant concentration of Q in the gel, only a 
large reservoir of Q that diffuses into the polony.  Specification of a source at the boundary is 
only a convenience that avoids the computational overhead of defining the huge solution space 
that would be needed to accurately represent this reservoir.  In this sense, rescaling may actually 
help represent polony growth more accurately, but only by introducing another artifact – a 
gradually receding source at the edge of an ever-growing reservoir. 

2D polony concentration profiles on line y==0 for Q and S 
after denaturing cycles 40 and 100 for two different 
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Figure F3.4.6-1: Q and S 
concentration profiles at cycles 40 
and 100 of the xb80 and xb160 
10µm 2D SPGM simulations (Table 
T3.4.3-1).  Shown are the 
concentrations along the y axis of 
the 2D solution space.  Unlike S and 
other polony molecules, Q has a 
gradually changing concentration at 
the edge of solution space.  The 
cycle 40 Q curves stop at +/- 160 vs. 
+/- 300 for the cycle 100 curves 
because solution space was confined 
within +/- 160 until a rescaling 
operation extended it.  At the time of 
that rescaling, the Q source that used 
to be at +/- 160 was removed to +/- 
300, directly affecting Q dynamics 
and indirectly affecting subsequent 
polony evolution, especially near the 
polony edge.  Note that S100 
profiles differ in the xb80 vs. xb160 
simulations mainly at the edge. 
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3.5 Calculation of polony yield 
 
This section shows how the formula used to compute yields in a polony model that uses a radial 
coordinate depends on the implicit equations used to solve PDEs in that model.  Discussion is 
restricted to the 2D radial coordinate used in 3D TPIMs. 
 
In 2D where there is radial symmetry, the diffusion equation has the form: 
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where C is the concentration of the diffusing substance and D is its diffusion coefficient.  In the 
following we will assume that D is a constant > 0, and that C satisfies regularity assumptions 
adequate for the argument in E3.5-2 below (specifically, ∂C/∂r is finite at the origin, r⋅∂C/∂r → 0 
as r → ∞, and C satisfies whatever continuity and differentiability requirements are needed to 
allow the partial derivative with respect to time to be moved behind the integral sign in E3.5-2b). 
 
Equation E3.5-1, plus the additional assumptions mentioned, guarantee that the total mass M of C 
is conserved.  This is easily shown by the following argument: 
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This argument is transferable to the approximate solution of diffusion equations using finite 
difference equations.  Explicit versions of the finite difference equations used in the 2D radial 
coordinate of the 3D TPIM model are given in E3.5-3 (Crank, 1956, equations 10.41 and 10.42).  
Here C(m,t) represents the concentration at spatial mesh point m at time mesh point t, where the 
radial mesh distance is ∆r and the temporal mesh distance is ∆t.  (Therefore the actual radial 
distance of mesh point m is m∆r, and similarly for t.) There are two difference equations, one for 
m>0 and the other for m=0.  The boundary condition assumed for this finite difference 
approximation is that C(N,t) = 0 
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The finite distance analogue to E3.5-2a is: 
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Notice that in E3.5-4, the term for m=0 vanishes and there is no contribution by C(0,t).  Therefore 
the summation may just as well begin at m=1. 
 
Proceeding with the argument analogous to the rest of E3.5-2 does not generate the identity 
S(t+1) - S(t) = 0, but rather another expression: 
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In this sum, all terms C(k,t) cancel out for N>k>1.  Specifically, such a term appears three times, 
once for m = k-1, where it gets a coefficient of (2(k-1)+1) = 2k-1, once for m = k, where it has a 
coefficient of –4k, and once for m = k+1, where it gets a coefficient of (2(k+1)-1) = 2k+1; the sum 
of these three coefficients is 0.  The term C(N,t) vanishes because C is 0 at the boundary radius by 
our assumed boundary condition.  Therefore, S(t+1)-S(t) contains only terms C(0,t) and C(1,t).  
C(0,t) only appears in the term for m=1 as (2m-1)C(m-1,t) = C(0,t).  C(1,t) appears in two terms: 
In the m=1 term it appears as -4C(1,t), and in the m=2 term it appears as (2m-1)C(m-1,t) = 
3C(1,t).  Thus, C(1,t) appears in S(t+1)-S(t) as (-4+3)C(1,t) = -C(1,t) and: 
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But by the finite difference equation for m = 0 in E3.5-3, this becomes 
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Thus, S(t), the direct analogue of M in E3.5-2a, is not conserved over time.  However, if we 
define M(t) as S(t) + π(∆r2/4)C(0,t), E3.5-7 says that M(t) is conserved over time.  Therefore the 
definition of mass that is conserved by difference equations E3.5-3 is 
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QED 
 
I note two additional points:  
 
• The difference equations actually used for the 2D radial coordinate of the 3D TPIM are 

Crank-Nicolson variants of E3.5-3 in which all C(k,t) terms on the right sides of the equations 
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are replaced by (C(k,t)+C(k,t+1))/2 (see E3.6.1-1).  However, the argument above works just 
as well with these more complicated equations and results in the same conclusion.  

 
• Notice that the result of this proof is that conservation is achieved by adding back a 

contribution for the C(0,t) term that vanished from S(t) itself.  A similar argument, when 
applied to the finite difference equations used for the 3D SPGM (polony3D), shows that the 
3D analogue of S(t) is directly conserved.  This has the strange consequence that in the 3D 
SPGM, concentrations at the origin are not counted towards the total mass of a molecular 
species, while these masses are included in the 3D TPIM! 

 
We wish to acknowledge M. Bennett for calling our attention to the argument for conservation of 
mass in continuous PDEs in equations E3.5-2 and pointing out that the finite difference 
equivalent must be used for yield calculations. 
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