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1. Research Plan 
Technical Area 2: Neuro-anatomical Data Collection 

F. Overview of the neuroanatomical approach.  

Our neuro-anatomical approach is unique in 

that it relies on optical readout of cell-identifying 

nucleic acid barcodes, rather than on electron 

microscopic axon tracing. While highly novel in its 

principles and implications, this strategy is based 

on technologies that are now well established and 

rapidly advancing, including molecular barcoding 

(Lu, Neff, Quake, & Weissman, 2011; Peikon, 

Gizatullina, & Zador, 2014; Zador et al., 2012) and 

fluorescent in-situ sequencing (Lee et al., 2014, 

2015; Mitra, Shendure, Olejnik, & Church, 2003) 

as well as expansion microscopy (Chen, Tillberg, 

& Boyden, 2015). Crucially, the approach treats 

long-range and short-range connections on an 

equal footing, and is applicable to arbitrarily large brain volumes without a drop in accuracy: 

error rates are constant as a function of the length of “traced” axon, rather than scaling linearly 

with it. The approach enables very high speeds: once the technology is in place, data collection of 

three mice for the Phase 1 milestone will take approximately one month on a single microscope. 

Moreover, the approach naturally integrates with measurement of cell morphology, and, for the 

first time, opens the way toward richly molecularly annotated connectomics. This transformative 

approach fundamentally changes the “governing laws” of connectomics technology, enabling 

massive scaling, redundant error-correction of multiple data-types, and integration of molecular 

annotation. Therefore, the approach pioneered here will establish the future trajectory of structural 

brain mapping methods.  

From tracing to barcoding.  

The brain is organized at the nanoscale, yet neural circuits span over centimeter-scale 

distances. Both long-range and short-range connections are integral to the brain’s architecture: the 

algorithmic function of a piece of local cortical circuitry likely cannot be understood in isolation 

from its long-range cortico-cortical, cortico-striatal and cortico-thalamic inputs and outputs. In the 

theoretical framework of this proposal, long-range connections between areas are essential to a) 

connect a cortex-based slow learner with a basal ganglia based fast learner and b) implement 

Bayesian inference using top-down priors. For our framework, and for most other interesting 

theories of brain architecture, the structures of the “local” networks do not make sense without 

understanding the detailed structures of the long-range connections. 

A key challenge for connectomics, therefore, is to enable the scalable, accurate, long-range 

tracing of axons in order to reconstruct entire circuits. Axons shrink in diameter down to tens of 

nanometers, yet often travel several millimeters along complex paths, with kilometers of axonal 

wiring present in a cubic millimeter of cortex. This makes accurate long-range axon tracing 

extremely challenging. The electron microscopy approach to connectomics views axon tracing as 

an image analysis problem: the axonal membrane is reconstructed through tens of thousands of 

thin cross-sections to identify its path. A crucial problem is the fragility of such analysis: each 

error affecting an axon can cause disproportionate damage to the reconstruction, by mis-labeling 

 
Figure 1  The probability of correctly 

ascribing a given neurite to its parent falls off 

exponentially with distance with serial 

reconstruction. By contrast, the error rate using 

barcode-based reconstruction is independent of 

distance. 
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each of the hundreds of downstream synapses in the connectivity matrix. If an error in an axonal 

trace occurs on average even once per the length of one axon, which is several millimeters in 

mouse brain, then 50% of all connections in the connectivity matrix will be incorrect; not even one 

ultrathin-section can be damaged or imperfectly stained, lest the entire reconstruction be lost. To 

be more rigorous, for an error model involving only two axons, the connection error rate would be 

56.8% via sum of the even terms of the Poisson.  If the model involves 3 or more axons then the 

connection error rate is roughly 38%. For an axon 5 mm long, and EM sections 50 nm thick, the 

accuracy per single axon section must be better than 99.999% in order to have a 36% chance of 

assigning a correct connection.  

Our approach promises to define the future of connectomics for several reasons: (1) It is 

ultimately more scalable and cost-effective than the electron microscopic approach; (2) It enables 

the incorporation of multiple redundant forms of information that mutually error-correct one 

another, to allow accurate determination and cross-checking of connectomes; (3) It opens the path 

to molecularly annotated connectomes, which incorporate not only information about connectivity 

and morphology but also about the molecular identities of    neurons and synapses, which are likely 

integral to a true understanding of the diverse learning rules and communication mechanisms used 

by the brain; (4) It can be readily validated on a small scale by the traditional methods of EM 

connectomics; (5) It is easy to register with functional imaging (e.g., 2P microscopy of calcium 

indicators). Specifically, we eschew electron microscopic image analysis and take a radically 

different and complementary approach, viewing long-range axon tracing not primarily as an image 

analysis problem but as a problem of genetic labeling and optical readout. By labeling each neuron 

with a unique nucleic acid barcode (which can be thought of as a “molecular ID card”) which fills 

the axon and is transported to synapses, then any appearance of that barcode anywhere within the 

circuit identifies the corresponding neuron – the manual tracing of nanoscopic wires through tens 

of thousands of dense, greyscale image stacks is no longer required.  

From bulk barcoding to in-situ barcoding.  

A DNA barcode is a unique sequence of DNA used to “tag” an object of interest. The number 

of possible DNA barcodes grows exponentially with the DNA sequence length: there are 4N 

possible sequences of length N. For example, a barcode of length 30 could has a potential diversity 

of 430 = 1018, a number which vastly outstrips the number of neurons in the mouse cortex (~107). 

Thus with sufficient diversity, each neuron will almost certainly express a unique tag even when 

barcodes are expressed at random.  

Zador originally suggested (Zador et al., 2012) an approach to connectomics, called Barcoding 

of Individual Neuronal Connections (BOINC), which leverages large numbers of DNA barcodes. 

First, each neuron is given a unique DNA barcode. Copies of each neuron’s barcode are exchanged 

with its immediate synaptic neighbors. A cell’s own barcodes are then stitched together with 

barcodes received from its synaptic neighbors, forming a set of barcode pairs corresponding to 

synaptically connected neurons. The barcode-pair DNA strings are extracted, pooled, amplified 

(i.e., creating many identical copies of each barcode pair) and sequenced on a bulk DNA 

sequencing machine, such as an Illumina HiSeq. This results in digital data specifying a set of “on” 

matrix elements, corresponding to barcode pairs (synaptic neighbors) which are observed, and a 

set of “off” matrix elements, corresponding to barcode pairs which are not observed (e.g., due to 

the absence of a synapse between the corresponding two neurons). Because of dropping high-

throughput sequencing costs, BOINC has the advantage of ultra-low cost (potentially on the order 

of $10k for the entire mouse cortex, see (Marblestone et al., 2013) for estimates, but in its original 
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form it also has several limitations. It does not include detailed spatial or morphological 

information, although, by dividing the brain into mesoscale cubes and appending additional 

barcodes to the DNA derived from each cube, it is possible to obtain coarse-grained spatial 

information. Below we describe how this limitation can be overcome by using in-situ sequencing 

(FISSEQ) on an optical microscope for barcode readout, rather than sequencing in a bulk 

sequencer. 

Fluorescent in situ sequencing (FISSEQ).  

As a solution to these problems, we have combined BOINC with in-situ multiplexed readout 

by fluorescent microscopy. The basic idea is to combine cellular barcoding with an in-situ optical 

readout, so that the barcode pairs can be read out optically without disrupting tissue structure 

(Figure 4).  

Taking inspiration from BrainBow methods (Cai, Cohen, Luo, Lichtman, & Sanes, 2013; Livet 

et al., 2007), which give each neuron a unique color in the fluorescent microscope – an analog 

summation of three fluorescent protein expression levels – one can conceptualize our approach as 

a “4N-color digital BrainBow”. While fluorescence microscopy only has access to ~4-8 distinct 

color channels per image, our solution here is to encode cell identity into a sequence of colors 

which is revealed over time, in a sequence of biochemical reaction cycles. The linear sequence of 

an RNA molecule then determines the sequence of colors that appears in the microscope during 

successive cycles: thus the RNA barcode “blinks out its code” over time. With N cycles and 4 

colors per cycle, we have 4N distinguishable barcodes.  

We will apply FISSEQ to read out neuronal connectivity. With FISSEQ, we sequence DNA 

or RNA molecules via fluorescent microscopy, in the context of intact, fixed tissue slices. The 

development of FISSEQ began in the Church laboratory over a decade ago (Mitra et al., 2003). 

The underlying principles are similar to those used by the Church laboratory and others to usher 

in the next-generation sequencing revolution (Church and Kieffer-Higgins 1988; Bentley et al., 

2008; Peters et al., 2012). In both bulk high-throughput sequencing and FISSEQ, short sequences 

are locally amplified on a substrate and then imaged one nucleotide at a time. However, the 

requirement to sequence RNA in intact tissue—rather than isolated and purified DNA, as in 

conventional bulk sequencing—posed additional challenges. These limitations have now been 

overcome (Lee et al., 2014), and FISSEQ is poised to transform many fields of biology by allowing 

the joint, high-throughput readout of sequence and spatial information. 

In FISSEQ, a series of biochemical processing steps, such as DNA ligations or single-base 

DNA polymerase extensions, are performed on a block of fixed tissue, interlaced with fluorescent 

imaging steps. The process is conceptually identical to the mechanism of fluorescent sequencing 

by synthesis in a commercial bulk DNA sequencing machine, except that it is performed in fixed 

tissue (we have typically used sequencing by ligation rather than sequencing by synthesis on our 

published work due to the wide availability of the reagents, but this is a technical issue of no 

importance here). Each DNA or RNA molecule in the sample is first “amplified” (i.e., copied) in-

situ via rolling-circle amplification to create a localized “rolling circle colony” (rolony) consisting 

of identical copies of the parent molecule. A series of biochemical steps is then carried out. In the 

kth cycle, a fluorescent tag is introduced, the color of which corresponds to the identity of the kth 

base along the rolony’s parent DNA strand. The system is then “paused” in this state for imaging. 

The entire sample can be imaged in each cycle. The fluorescent tags are then cleaved and washed 

away, and the next cycle is initiated. Each rolony – corresponding to a single “parent” DNA or 
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RNA molecule in the tissue – thus appears, across a series of fluorescent images, as a localized 

“spot” with a sequence of colors corresponding to the nucleotide sequence of the parent molecule. 

The nucleotide sequence of each DNA or RNA molecule is thus read out in-situ via fluorescent 

microscopy. FISSEQ is an example of an extremely dense form of in-situ nucleic acid readout: 

every letter along the RNA chain is read. Thus, barcodes for FISSEQ can be packed into a short 

string of DNA, as shorts as 15-20 nucleotides long for the mouse brain. As we will see below, this 

leads to a simple and powerful strategy for viral barcoding, in which random short strings 

(oligonucleotides) of DNA encode the barcodes.  

G. Using in-situ multiplexing to map connectivity.  

To read out synaptic connectivity in our approach, cell-identifying RNA barcodes are targeted 

to the pre-synaptic and postsynaptic membranes, and in-situ multiplexing is used to optically 

resolve and sequence the pre-synaptic and post-synaptic barcodes at a large fraction of synapses, 

thereby identifying connected pairs of cells in-situ.   

Presynaptic, postsynaptic and proximity-ligation tags.  

The key problems which must be solved are: 1) Detecting synapses, 2) Ruling out close 

appositions of cell membranes which are not synapses, 3) Attributing synapses to the correct pre-

synaptic and post-synaptic neurons. In one strategy, barcodes localized to the fine neuronal 

processes adjacent to a synaptic connection are read separately, and are co-registered with a 

synaptic marker to both localize the synapse and identify the pre-synaptic and post-synaptic cells. 

Co-localization with a synaptic marker is important here, because a key challenge is to distinguish 

actual synapses from mere close appositions of neuronal processes. One trivial method for synapse 

tagging builds on the finding that synapsin is a fairly reliable marker of synapses, present at about 

90% of them 2,3. In the simplest method, then, we simply combine FISSEQ readout of the barcodes 

with conventional antibody staining of a synaptic marker. A more powerful method provides a 

nanoscopically precise marker of the location of the synaptic cleft by using the proximity ligation 

assay (PLA) (Söderberg et al., 2008) to detect the close co-localization of pre-synaptic and post-

synaptic proteins (neurexin and neuroligin); this approach is shown in Figure 5. PLA can be used 

to detect protein-protein interactions, with single molecule resolution, without the requirement for 

modification of either protein target (termed PLA-tagged). PLA is as straightforward to perform 

as conventional immunostaining.  

PLA offers two advantages over conventional dual-antibody stains. First, it is more specific. 

Since two binding events are required to form a signal, false positives occur only if there are two 

spurious binding events to two nearby off-target epitopes. Such “double errors” are quadratically 

rare; if the probability of a single off-target binding event is 5%, then to a first approximation the 

probability of a double event will be 0.25%. Furthermore, with PLA the signal is formed only 

when the two proteins are <40 nm from one another, a distance well below the limit of resolution 

of optical microscopy (200 nm) and only twice the size of the synaptic cleft (20 nm). With double 

antibody labeling, by contrast, any two overlapping spots are interpreted as representing co-

localization, potentially increasing the rate of false positives. Second, positive signals—rolonies—

formed in PLA are very bright because they consist of thousands of fluorophore-conjugated 

oligonucleotides. These rolonies are thus easily distinguished from background fluorescence, 

reducing the rate of false negatives (Error! Reference source not found.B). 

This synapse-tagging strategy generalizes to allow tagging of many distinct structures – e.g., 

gap junctions, or particular types of chemical synapses – when combined with in-situ multiplexing: 



Church  Cortical Architecture and Algorithms for Machine Listening 

  

  

5 of 16 

for example, one could tag for synapsin (indicative of the presence of a synapse), 

acetylcholinesterase (indicative of the presence of a cholinergic synapse), connexin (indicative of 

the presence of a gap junction) or many other functionally decisive molecules, reading out all of 

them in parallel using in-situ multiplexing of short DNA oligonucleotides delivered via antibodies. 

Again, here we are not limited to only 4-8 colors of antibody staining, but rather have a 

multiplexing space of 4N possible tags. Briefly, for FISSEQ readout, oligo-tagged antibodies to 

synapsin are introduced and fixed in 

place. Circularized oligonucleotides can 

be annealed to the antibody-conjugated 

oligo. This oligo will then serve as a 

primer for rolling circle amplification, 

creating a synapse-indicating rolony, 

which can be sequenced by FISSEQ.  

This technique can be extended to other 

synaptic proteins, for instance, to 

discriminate inhibitory versus 

excitatory synapses.  

In a second strategy (Figure 6), pre-

synaptic and post-synaptic barcodes 

will be joined across the synaptic cleft 

into a single barcode, which is then 

locally amplified (termed PLA-

linked). This is effectively a form of 

PLA in which the neuronal cell-

identifying barcodes are themselves 

 
Figure 3 Barcode-entangeld PLA. Both the location of a 

synapse, and the identities of the pre- and post-synaptic cells, 

are encoded by a single FISSEQ rolony. 

 

 
Figure 2 PLA for high-resolution detection of synapses in the context of FISSEQ (A1). Tissue is first 

fixed and permeabalized, then incubated with primary antibodies to (presynaptic) neurexin1B and (postsynaptic) 

neuroligin, after which secondary antibodies conjugated to oligos A and B are added. The primary antibodies must 

be derived from different hosts (e.g. goat and rabbit), to permit selective binding by the secondaries. Additional 

bridge oligos C&D are added, and form a circle if and only if the two proteins are within 40 nm. (A2) The bridge 

is ligated. (A3) Rolling circle amplification results in the formation of a “rolony” containing many copies of the 

template. (A4) The rolony is probed with a fluorescent oligo, resulting in a very bright signal. (B) Demonstration 

of synapse detection using PLA. Left, synapses detected by PLA between modified HA-NLGLN1AB expressed 

postsynaptically and MYC-NRXN1B expressed postsynaptically. Right, negative control demonstrating 

specificity of synapse detection. 
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used as the PLA partners, without the need for exogenous antibody staining. To achieve this, we 

attach the RNAs barcodes (initially present inside the pre-synaptic and post-synaptic 

compartments) via linkers which are sufficiently long to allow the barcodes to move into the 

synaptic cleft itself following tissue fixation and membrane permeabilization. At that point, the 

RNA barcodes are reverse transcribed to cDNA, and hybridized to universal probes. Primer 

extension leads to a gap-filling reaction that encodes both pre-synaptic and post-synaptic barcode 

sequences into a single rolony, which is then amplified.  Appropriate sequence design allows direct 

determination of which barcode is pre-synaptic and which is post-synaptic, although we should 

not that this is also evident from the barcode sequence present in the nearby dendrite. This has the 

advantage of localizing and identifying synapses in an extremely precise manner, since all 

information needed to determine both the existence of the synapse and the identities of the pre-

synaptic and post-synaptic cells are encoded in a single FISSEQ-compatible rolony.  

At the beginning of Phase 1, an un-optimized PLA-tagged virus will be given to the 

neurophysiological team; in addition, we  will start optimizing the FISSEQ PLA protocol 

investigating the efficacy of both PLA-tagged and PLA-Linked viruses. Criteria will include 

number of rolonies per cell and number of rolonies per volume detected in one sequencing cycle, 

and localization error of pre-synaptic and post-synaptic synapses. We will choose one of the 

viruses by Milestone 1.A Month 12 to deliver to the neurophysiological team.  

Thus, the FISSEQ approach to connectomics has several key advantages. First, it allows cell 

positions and molecular profiles to be read out from the tissue in 

addition to the connectivity. Second, it can be used in 

combination with morphological reconstruction of some or all 

neurons (depending on the nature of the labeling), as well as the 

optical identification of synapses (e.g., with an anti-synapsin-1 

antibody): these morphological readouts not only add 

information to the raw connectivity matrix – they can also be 

used as an independent validation of the connectivity pattern, 

i.e., a form of error correction.  We have already demonstrated 

the integration of FISSEQ with other modalities of measurement 

such as protein tagging and membrane labeling.  

Ultra-high-resolution in-situ multiplexing with expansion 

microscopy (ExM). 

During FISSEQ-PLA protocol optimization, we will 

investigate the use of the most scalable form of optical super-

resolution microscopy yet developed, Expansion Microscopy 

(ExM) as an alternative to straight tissue processing. Rather than 

using lenses and mirrors to create optical magnification in a 

microscope, we recently found (Chen et al., 2015) that physical 

magnification of the specimen itself is possible. Polymerizing 

electrolyte monomers directly within a sample to form an 

electrically charged polymer network, followed by solvent 

exchange, results in specimen expansion. By covalently 

anchoring specific molecules within the specimen to this 

polymer network and proteolytically digesting unwanted 

endogenous biological structure, we found that samples could be 

 
Figure 4 Integration of 

FISSEQ with ExM (EXSEQ), 
demonstrated on endogenous 

transcripts in cultured mammalian 

cells. RNA was captured into the 

hydrogel prior to 5x expansion, 

and then rolonies were generated 

following expansion. Each dot 

represents an EXSEQ rolony that 

has been fluorescently probed. 

The yield of rolonies appears to be 

strongly enhanced, compared to 

unexpanded FISSEQ, perhaps due 

to the ease of rolony formation in 

a low-density, water-like 

environment rather than inside 

heavily cross-linked fixed tissue. 
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expanded isotropically ~4.5-fold in linear dimension. We discovered that this isotropic expansion 

applies to nanoscale structures, and thus this method, which we call Expansion Microscopy (ExM), 

can effectively separate molecules located within a diffraction limited volume, to distances great 

enough to be resolved with conventional microscopes. Indeed, because such conventional 

microscopes can be inexpensively scaled up to very high speeds of imaging, without incurring the 

same kinds of hardware expenses associated with other super-resolution technologies, nor 

requiring custom chemicals, ExM not only represents a fundamentally new modality of 

magnification, but also enables scalable, multi-color super-resolution imaging of fixed cells and 

tissues. We have already demonstrated that this method applies to large volumes of intact brain 

tissue, revealing the nanoscale organization of synapses and dendritic spines across macroscopic 

volumes in the mouse brain (Chen et al, 2015). ExM can not only readily resolve synapses from 

their nearest neighbors, but also can resolve pre-synaptic proteins from post-synaptic proteins, as 

demonstrated by co-staining for the proteins Bassoon and Homer1.   

To be clear, integration with ExM is not necessary to observe dense connectivity in our 

approach: the resolution needed to attribute tagged synapses to their pre-synaptic and post-synaptic 

barcode identities –for long-range as well as short-range connections alike – is much lower than 

that needed to resolve the fine structure of the individual synapse, as allowed by ExM. For 

comparison with other synaptic imaging methods used for deep characterization of individual 

synapses, note that, even in the absence of powerful super-resolution methods like ExM, it is 

possible to densely resolved every synaptic contact in the optical microscope. Typically, this is 

done at a spatial resolution of ~250 nm x ~250 nm x ~ 70 nm, using the high lateral resolution of 

a confocal microscope coupled with < 70 nm thin sections via Array Tomography (Micheva & 

Smith, 2007), which was specifically developed as a means to resolve individual synapses. For 

comparison, of the already-published version of ExM, demonstrated in the figures above, achieves 

<70 nm x <70 nm x <200 nm resolution, beating the resolution of Array Tomography along all 

three axes, yet without requiring physical thin sectioning of the tissue to do so. Thus, in 

combination with our in-situ multiplexing approach to reading synaptic connectivity, which does 

not itself rely on ExM, ExM can enable a truly comprehensive approach to molecular and structural 

characterization of dense neural circuitry, while automatically incorporating the long-range 

connections without the need for axon tracing. We have already integrated ExM with FISSEQ 

(Figure 7). Indeed, the integration of these methods is expected to broadly transform biology 

because it enables super-resolution localization and identification of thousands of distinct 

biomolecules, over large volumes of intact tissue. ExM increases the efficiency of FISSEQ rolony 

formation by removing steric hindrance of proteins and other molecules. The increase in efficiency 

reduces the number of low-quality non-sequencable samples, reducing wasted experimenter and 

device time. In addition, due to the optical clearing effect, background and non-tagged 

fluorescence is nearly removed, which decreases the burden on co-registration algorithms. In the 

FISSEQ-PLA protocol optimization we will investigate 2x super-resolution ExM achieving a 

resolution of ~125 nm x ~125 nm x ~250 nm, to provide higher detail and reduced error rates for 

the neural circuit reconstructions. 
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Barcode expression. 

 The core of our approach is to use viruses to barcode a population of neurons with random 

short sequences of RNA. The barcode, which is read out by FISSEQ, acts as a unique identifier 

for each neuron.  To generate a library of barcoded viruses, we simply clone a commercially 

available N-mer random oligonucleotide into the Sindbis virus genome. We then infect a 

population of neurons in auditory cortex with this diverse viral barcode library via simple injection. 

A clear demonstration of this method is provided in Error! Reference source not found., wherein 

the axons of cultured neurons were separated from the cell bodies in a microfluidic device.  

A barcode consisting of 30 random nucleotides has a theoretical sequence diversity of 430=1018, 

far more than the number of neurons infected in a typical experiment. With high probability the 

barcode in each neuron is unique, distinguishing that neuron from all other neurons. The barcodes 

fill the somatic and dendritic compartments, allowing us to determine laminar position, neuronal 

morphology, and local connectivity. The barcode is also engineered to bind to a modified 

presynaptic protein, which can be coexpressed to transport barcode to distal projections. In this 

way, in contrast to all existing approaches, we can identify distant targets of many neurons in a 

single brain without tracing their entire axons. 

To achieve high coverage of a circuit via virus 

infection, we infect at high viral titers. Under these 

conditions, some neurons are infected with multiple 

barcode-bearing viruses. Multiple infections per neuron 

are not a problem with FISSEQ, because we can read 

out each of the multiple barcodes from each neuron. 

To enable the technique to ultimately scale to the 

whole brain level, we will move away from viral 

infection and develop inducible, transgenic barcodes 

that will then be present natively in every cell of the 

animal.  We are already pursuing a strategy for 

barcoding every cell of a transgenic mouse (named 

NHEJ). The idea is very simple: to leverage the 

naturally error-prone nature of non-homologous end 

joining after a DNA break in the genome. To make the 

process non-toxic and targeted to an expression locus, 

we use the programmable DNA binding CRISPR 

protein Cas9, targeted via a guide RNA strand, to a 

specific genomic site. We will express the construct 

transiently in the adult to barcode each cell uniquely and 

safely. This strategy has the benefit of leveraging the 

huge investments now being made in using CRISPR for 

gene therapy, and indeed the design is almost identical 

to constructs used in gene therapy (Guilinger, 

Thompson, & Liu, 2014). We will begin development 

of the NHEJ transgenic mouse line in Phase 1 and 

deliver it to JAX by Waypoint 2.2 Month 27, so that they will be available for neurophysiology. 

 

 
Figure 5 FISSEQ of viral barcodes can 

be used to trace the morphologies of 

neurons. (A) A neural culture in which axons 

are separated from cell bodies was sparsely 

infected with a virus encoding a barcode and 

presynaptic protein engineered to bind to the 

barcode. (B) Barcodes were amplified into 

rolonies and probed with a red fluorescent 

oligo. (C) Overlay of A and B. Expression of 

a postsynaptic protein engineered to bind the 

barcode allows reconstruction of dendrites. 

We expect that by optimizing the protein 

constructs and the imaging, we will be able to 

achieve even better reconstructions of 

neuronal processes. 



Church  Cortical Architecture and Algorithms for Machine Listening 

  

  

9 of 16 

Data acquisition pipeline. 

 Existing automated FISSEQ instruments will enable large-scale, automated in-situ 

multiplexing for connectomic data collection. While the original sequencing and imaging was done 

manually, we already have advanced automation robotics generating FISSEQ data. We have 

accomplished this automation quickly due to our experience developing the Polonator platform 

(the first open source high-throughput sequencing automation system), and prior relationships with 

independent engineering and manufacturing firms (e.g. Dover Motion, a Danaher subsidiary 

manufacturing the sequencing robot for purchase). No micro-fluidics are required. The system is 

based on standard microscopy and macro-fluidic (not micro-fluidic) hardware and therefore the 

cost is comparable to commercial microscopes. Crucially, this system is manufactured by GT-

Bioseq, LLC.  

Imaging throughputs.  

The throughputs of barcode-based connectomics are vastly higher than those of other 

approaches. Spinning disk confocal microscopy can process ~100k 4-color voxels per second. In 

each experiment, we will need to perform ~15 cycles of 4-color FISSEQ. This puts the overall 

imaging voxel throughput of FISSEQ in the range of ~5k voxels per second. Given this raw 

imaging throughput, and a ~250 nm x 250 nm x 60 nm resolution voxel size set by the optics of 

the confocal scan head, the 100 um x 500 um x 500 um  Phase 1 neuroanatomical target in one 

mouse could be acquired in a matter of days on a single instrument, and the Phase 2 target of (1000 

um)3 in ~3 months for one mouse. ExM throughputs are expected to be ~125x slower on a 

volumetric basis using current instrumentation, since the voxels are ~125x smaller.  

Validation by EM.  

It is straightforward to validate FISSEQ-based connectomics via EM. Rolonies formed by PLA 

cannot natively be visualized using EM. However, we have developed a method of visualizing the 

rolonies in EM by incorporating modified nucleotides (replacing ‘T’ with iodine-UTP) containing 

heavy-metal. Preliminary data (Figure 9) demonstrate that rolonies labeled in this way can 

incorporate heavy-metal labeled nucleotide analogs, that the subsequently formed rolonies can be 

visualized with EM, and that the rolonies are often found near synapses. To obtain quantitative 

estimates will require serial electron microscopy, but 

based on our preliminary data (several dozen PLA 

rolonies, no false positives detected), we predict the 

false positive rate to be very low. In this way we will 

validate both the localization of the synapse and the 

neural circuit reconstruction. 

 
 

Figure 6 PLA signal can be directly 

visualized by electron microscopy. Cultured 

neurons expressed myc-NRXN1B on the 

presynaptic side and HA-NLGN1AB on the 

postsynaptic side. PLA was performed with a 

modified protocol so as to introduce 5-iodo-

dUTP into the PLA ‘rolony’ during rolling circle 

amplification. The resulting heavy labeled balls 

of DNA are detectable proximal to synapses 

under TEM (a, detail of ball in b). 
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Technical Area 3: Neural circuit reconstruction 
The algorithms needed to reconstruct a circuit from barcoded FISSEQ and PLA data are much 

less challenging than from conventional EM data for two reasons. First, synapses are brightly 

marked by PLA, and do not require sophisticated image processing to detect as they do in EM 

data. Second, because each neuronal process is filled with an identifying neuronal barcode, it is 

not necessary to trace each process with near perfect accuracy; indeed, even distant processes, 

millimeters away, can be correctly assigned to the soma of origin. Finally, we note that registration 

of the neuroanatomical data to the calcium-imaging data is relatively straightforward because both 

are optical measurements.  

H. Co-registration of Functional and Structural Data 

Extracting spatial (and temporal) information from calcium imaging data 

Extracting information from large spatiotemporal calcium imaging movies has been 

challenging in the past, particularly in cases where many neuronal processes overlap spatially.  

Current approaches are typically based on off-the-shelf methods such as principal or independent 

components analysis (PCA or ICA); these approaches are based on an unstructured signal model 

and therefore fail to exploit the considerable prior knowledge we have about the underlying neural 

and calcium signals.  Thus their performance is significantly suboptimal (these methods often fail 

to adequately demix spatially-overlapping data, for 

example), as we have shown quantitatively in our 

preliminary work 1.  

We have recently developed a new approach based on 

convex optimization and structured nonnegative matrix 

factorization. This approach relies on the observation that 

the spatiotemporal fluorescence activity can be expressed as 

a product of two matrices: a spatial matrix that encodes the 

location and shape of each neuron in the optical field and a 

temporal matrix that characterizes the calcium concentration 

of each neuron over time. This approach exploits the sparsity 

of both the underlying neural activity and the spatial shape 

of neurons.  We have successfully applied this approach to 

 
Figure 7 Automatic detection of 

neurons in two-photon calcium 

imaging movies. Regions of interest 

(ROIs) representing neurons are 

automatically extracted from data 

collected in the Yuste lab (layer 2/3 

mouse visual cortex expressing 

GCaMP6s, imaged in vivo). Colorbar 

indicates the correlation of each pixel 

with its nearest neighbors. The white 

contours show the boundary of each 

inferred cell shape; black circles denote 

the corresponding centers of mass. Note 

that the method accurately and reliably 

extracts high-quality ROIs. The 

supplementary video provides a more 

complete depiction of the results, 

especially the dramatic denoising that 

the method provides: 

http://www.stat.columbia.edu/~eftychi

os/movies/Kira-vid2.mp4; see1. 

 

http://www.stat.columbia.edu/~eftychios/movies/Kira-vid2.mp4
http://www.stat.columbia.edu/~eftychios/movies/Kira-vid2.mp4
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a wide variety of calcium imaging data (both in vitro and in vivo in a number of different species 

and brain regions), achieving state of the art results in our preliminary work.  See Figure 10 and 

Figure 11 for illustrative results. 

Deconvolving rolony location and sequence estimates in FISSEQ imaging data 

Our goal is to estimate the locations of the rolonies and the RNA sequences in each rolony. 

This can be cast as a structured deconvolution problem, similar in spirit to the calcium 

deconvolution problem but different in detail. Our method exploits the spatial sparsity of rolony 

locations (i.e., that most pixels are not rolony centers), a simple linear convolutional model 

mapping the rolony signals into the observed blurred, noisy image data, and the non-negativity of 

the florescence signal (non-negative group-LASSO penalized optimization, [Beck2009]). Once 

the rolony locations and corresponding RNA sequences are obtained, we use standard sequence-

comparison methods to determine the corresponding barcode for each rolony, and then “color” the 

rolonies by their barcodes to outline the shape of each neuron. We have tested the algorithm on 

the FISSEQ human dataset published in 4; the image data in this case was of size 400 × 400 × 30 

× 4 (width × height in number of pixels × sequence length × number of nucleotides). Our results 

reveal that the algorithm is easily parallelizable to scale up to larger volumes. 

Co-registering FISSEQ and calcium imaging data volumes 

The algorithms described briefly above will provide the shapes of the neurons observed in the 

neural volume, imaged via calcium fluorescence and then FISSEQ.  To co-register these two data 

volumes, we will utilize a coarse-to-fine approach, using coarse anatomical landmarks, then cell 

bodies, then subcellular features to co-register the volumes.  At each scale, we will initialize with 

linear registrations (initializing from the linearized registration inherited from the next-coarsest 

scale, where available) and then use penalized spline-based registration methods to handle any 

small deviations from linearity in the mappings between the two volumes. 

At the coarsest scale we will register micro-anatomical landmarks, using a method inspired 

by Ko et al (2011 by marking recognizable landmarks (e.g., blood vessel bifurcations, fluorescent 

bead injections, and/or brightly labeled astrocytes) in both volumes; then use standard point-cloud 

registration methods to obtain a map from one volume to the other by solving a penalized least 

square problem for optimal registration. Ko et al successfully used linear landmark-based 

registration on spatial scales of 100-200 microns; we expect this approach to work well on similar 

 
Figure 8 Importance of the demixing procedure. Left: Summary spatial correlation image zoomed into two 

overlapping neurons from the dataset analyzed in Fig X. The exact spatial masks cannot be readily resolved. 

Middle: Spatial masks for two identified overlapping ROIs after demixing (the brown region corresponds to the 

overlapping pixels). Right: Inferred calcium traces of the two neurons obtained by averaging over the spatial masks 

(blue traces) and by applying the proposed method (green traces). Simple averaging over the ROI of neuron 1 can 

be misleading if demixing is not performed. 
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scales, though potentially nonlinear (spline-based) registration may be necessary at larger scales. 

At the next finest scale we will register the locations of the somas located in each volume.  

If all the somas are visible in both volumes, this is again a straightforward penalized least squares 

problem.  However, some cell bodies may be obscured in one or the other volume (5
 were unable 

to register 10 of 126 of their neurons).  Thus we will use a more robust approach by optimize a 

similar penalized least-squares matching criterion as described above, but now simultaneously 

optimizing over the matchings between the collection of somas in each volume. A coordinate-

descent approach will be used: holding the matching fixed while solving a penalized least-square 

problem to optimize over the linear or spline registration coefficients; then holding the registration 

mapping coefficients fixed and optimize (locally) over the matching.  

Finally, at the finest scale we will register not just the cell body locations but also 

subcellular features such as soma shape and large dendritic branch points.  This step will proceed 

as in the step described above, using the soma-based registration as an initialization. As an 

alternative, we will use automated image registration techniques based on maximization of pixel-

based correlation between images without relying on computing landmarks – although these are 

not as computationally efficient as landmark-based methods. 

I. Neural Circuit Reconstruction 

To develop a set of computational algorithms for reconstructing connectivity.  

We will design and apply a set of algorithms that can convert FISSEQ and PLA data into a 

neuronal connectivity matrix. The raw data in Phase I are in the form of a Z-stack of two-

dimensional images, obtained from FISSEQ imaging, in which the barcode sequence associated 

with each rolony has already been determined using the algorithms outlined above. In addition, 

PLA spots, marking synaptic connections, will also be marked. Note that, because we will use 

targeted reverse transcription to form rolonies from the barcode, almost all the rolonies in a given 

neuron will have exactly the same sequence (modulo sequencing error; see below). This 

significantly simplifies the reconstruction problem.  In subsequent phases the datasets will differ 

in two ways. First, in Phase 2 we will deploy the transgenic PLA mouse NHEJ, in which pre- and 

postsynaptic barcodes are entangled in a single rolony and read out. This further simplifies the task 

(described in more detail below) of ascribing a particular PLA dot to its pre- and postsynaptic 

partners. Thus the procedures we outline below provide the framework for most of the analyses 

required.  

The set of algorithms that we will implement and apply can be broadly separated into three 

components: Preprocessing, connectivity reconstruction, and post-processing. Preprocessing 

encompasses various error correcting steps and other procedures that prepare the dataset for 

determination of the connectivity matrix. In the connectivity reconstruction step, we determine the 

connectivity matrix itself. Finally, the post-processing step includes building the database 

searchable by the rest of the team, and integrating data with the gene expressing profiles. Below, 

we describe these procedures in more detail.  

Preprocessing. In the preprocessing step, we correct for errors that arise in determination of 

the sequence of each rolony. In FISSEQ, as in other forms of high-throughput DNA sequencing, 

several forms of error can arise. The most common forms include single nucleotide insertions, 

substitutions and deletions. There are a variety of standard algorithms in bioinformatics for 

correcting for such errors, usually by comparing a given sequence to a reference genome. This 

form of error correction can be seen as solving a generative model in which the observed sequence 

is derived from an underlying sequence by means of one or more generative processes that produce 

insertions, deletions and substitutions. In our specific problem conditions are particularly favorable 
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for such error-correcting algorithms because we can exploit a very prior that a given rolony has 

the same sequence as its neighbors. Only in cases where rolonies are from two nearby neurons, 

expressing different barcode sequences, will the sequences of nearby rolonies differ; such cases 

will be easily recognized because in those cases the typical Hamming difference between the 

rolonies will be large. Thus sequence correction will be relatively straightforward. The end result 

of this preprocessing step will be a data set with the same dimensions as the original data set in 

which the sequence of each rolony has been corrected.  

Reconstruction. To reconstruct connectivity from this corrected data set, we must determine 

the pre- and postsynaptic barcodes associated with each synapse marked by PLA. In Phase I, this 

essentially amounts to determining the nearest-neighbor barcode pair, in three dimensions, for each 

PLA-marked synapse—a relatively straightforward computation. In Phase II, this requires 

applying the error-correcting methods described in the pre-processing step to correct errors in the 

transgenic mouse barcodes. The results of this step is a matrix describing the connectivity of 

neurons 1…N, along with their position in 3D space and their registration to the calcium imaging 

data.  

Post-processing. We will design a set of tools for displaying and analyzing connectivity. For 

example, on the basis of connectivity matrix, we will place network nodes into 3D space using an 

algorithm implementing force-directed graph drawing. We will compile a set of statistics that 

describe the connectivity matrix and make them available to the research team. We will link 

connection data to 3D position data, as described above, and to gene expression data which will 

allow identify cell types. Finally, we will make a searchable online database that allows other 

members of the team to have access to data for validation and hypothesis testing.  

J. Neural Data Storage 

Construct a Spatial Big Data (SBD) database for spatially resolved data  

Spatially resolved data is massive in size and complexity. In this task we will extend and 

develop on the MICrONS GFE AWS API as necessary for storing and rapidly querying spatially 

resolved data including synaptic transcripts, c-registered functional data, experimental 

annotations, structural data, and neural circuit reconstructions.  Given the size of each individual 

image, keeping all raw images for every FISSEQ base-pair for each sample would be prohibitive.  

We will therefore explore options for storing spatially-resolved transcriptome sequencing data 

using extensions of the FASTA and SAM/BAM formats for the sequencing data and a limited 

number of stained images for the morphological and biomarker data.   

Spatial Big Data (SBD) Database Infrastructure for Spatially Resolved Data   

Recent increases in the size of large-scale spatially resolved datasets (e.g. the massive datasets 

generated from Twitter, Facebook, and Google search activity) have led to significant recent 

developments in technology for storing, querying, and analyzing Spatial Big Data (SBD) 6. We 

will utilize the MICrONS GFE AWS to store our data. If required, we will connect the GFE AWS 

through API to  a database based on Hadoop-GIS also hosted in the GFS AWS, which has recently 

been shown to outperform Spatial Database Management System (SDMS) for compute-intensive 

queries7 on large-scale spatial datasets.  The Hadoop-GIS system parallelizes spatial queries and 

maps the queries onto MapReduce.  The framework is integrated with HIVE 8 and supports both 

simple and complex spatial queries.  Specifically, the cyber-infrastructure will consist of Hadoop 

and the Hadoop distributed file system (HDFS), will use GIS on Hadoop and Spatial Hadoop, and 

will enable storage and computation on spatially resolved transcriptome sequencing, 

morphological features, and cell and tissue morphology data. The Spatial Big Data database 

structure enables efficient computation of spatial relationships such as containment, neighbor 
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relations, and 3D distance, minimizing the data-footprint of pre-processed spatial relationships and 

providing additional flexibility to research applications. Data features include the development of 

data and metadata standards including the Digital Imaging and Communications in Medicine  

(DICOM) Working Group 26; the DICOM Structured Report standard9,  and the Annotation and 

Image Markup (AIM)10. 

Support of the use case specified in Neural Data Access Hadoop-GIS provides a robust and 

flexible API to allow database access Java, Python, and the Esri Geometry API (similar to SQL). 

This flexibility will allow us to open the database directly to users that a program savey, and facility 

the construction of the web interface described in Neural Data Access. 

Risks and alternatives strategies If we have difficulty creating the Spatial Big Data database, 

we will use Bisque to manage our data. Bisque: Bio-Image Semantic Query User Environment 11 

has an extensible data management system, and is suitable substrate for both development of the 

web-based interface as well as web-service tools, and we have already begun a productive 

collaboration with the director of Bisque (see Letter of Collaboration from Professor B.S. 

Manjunath).  Bisque’s web interface is utilized in our Neural Data Access plan.  
K. Neural Data Access 

Collaborator-available web-based application for processing and sharing data 

We will utilize the MICrONS GFE AWS API with the database and service to allow rapid 

batch-mode querying of the image processing and visualization database via an extension to the 

Bio-Image Semantic Query User Environment (Bisque) architecture 11. Bisque is a suitable 

substrate for both development of the web-based interface as well as web-service tools, and we 

have already begun a productive collaboration with the director of Bisque, Professor B.S. 

Manjunath. Bisque allows the visualization of images and overlays, and includes the ability to 

subselect regions, thus it contains all the necessary building blocks to meet the visualization criteria 

of BAA 1.B.3.c. We will extend the interface to support downloading of subsections and display 

neurophysiological data. Bisque is open-source and actively maintained and has an extensible and 

highly modular design using web-standard communication formats and contains an array of built-

in analysis tools, such as CellProfiler12.  

Bisque contains Python and MATLAB interfaces to the widely used REST (Representational 

State Transfer) web service architecture. We will build on these interfaces to facilitate multiple 

forms of queries, such as positional requests (e.g., return all features that are adjacent to specific 

spatial co-ordinates); morphological requests (e.g. return all reads and spatial coordinates in all 

nuclei); gene requests (e.g. return all reads for a specific gene). We will deploy the entire software 

within the GFE AWS framework: 

Risks and alternatives strategies If we have difficulty integrating Bisque with the GFE API 

we will use a simplified data storage interface, we have been working with the Bisque development 

team. Alternatively, Harvard has two Amazon Web Services technical representatives onsite that 

have helped in the past deploying applications and analyses in the cloud.  
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