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Abbreviations

Please refer to the article for explanations of: Cel, HGP, HGP-nr, HGP-all, cu-15, M1EGR-1, M2EGR-1, and M1CRX.

Data downloads

We downloaded data from http://www.ncbi.nlm.nih.gov (HGP) and http://www.celera.com (Cel). Download dates: HGP-all, 11 November 2000; HGP-nr, 12 December 2000; Cel, 10 December 2000; RefSeq1 mRNA sequences, 5 December 2000; model nucleotide mRNA sequences, 6 December 2000.

Computer platform

Most of the results were obtained on a dual 400MHz Pentium processor running Linux with 1 Gbyte of RAM and 30 Gbyte of hard drive space. Programs were written in C and Perl, with programs that analysed entire sequences generally written in C for efficient performance

10,292 RefSeq1 mRNAs and largest mRNAs
The 10,292 RefSeq mRNAs comprised the sequences of those human mRNAs on the RefSeq database that were associated with a unique mRNA sequence (i.e., which had a unique “NM” accession number).  The  mRNAs referred to in the text as the ten largest mRNAs were those with the longest sequences among these 10,292.

Unique 15mer statistics

In a Poisson distribution of 15mers over 6 Gb (3 Gb over two strands) a given 15mer will have a mean number of occurrences ( = ~6, and the 15mer at any given sequence location will have a probability e−( = 0.0025 of being unique; on average, a 2000-bp mRNA sequence will therefore have about five unique genomic 15mers (disregarding splice junctions).  Assuming a Poisson distribution of incidence of unique 15mers in mRNAs with ( = 5, 99% of all such mRNAs will have at least one unique genomic 15mer.  For purposes of comparison, we note that the average size of the 10,292 RefSeq1 mRNAs is 2334 bases.  Assuming that the aggregate sequence error and variation rate is p, that 15mers are Poisson distributed with mean (, that only single-base errors are significant, and that errors are unbiased and independent, the chance of a multiply-occurring 15mer appearing unique due to errors (false positive) is (1−15p)( e−( (e15p( −1), and the chance of a unique 15mer appearing multiple due to errors in a similar 15mer (false negative) is 45(1−e−(p/3).   Use of ( = 6 and p = 0.1% yields the false positive and false negative probabilities 0.14% and 9.0%, respectively, cited in the article.  Some alternative estimates are below.  The derivation of these formulas follows.

False positive rate:  The probability that a multiply occurring 15mer appears unique due to error or variation is 
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False negative rate: The probability that a 15mer that differs from a given (unique) 15mer in a single base, and that error or variation makes the former 15mer appear identical to the latter is (here q = 1-p/3)
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As there are 45 15mers that differ from the given (unique) 15mer in a single base, the probability of a false negative is 45(1−e−(p/3).

We are exploring refinements to these expressions that take into account other possibilities such as the mutation of a single instance of a multiply occurring 15mer to a unique 15mer (another kind of false positive).  These refinements are expected to have only a small effect on the computed rates.

Alternative estimates: The program that finds unique 15mers in a sequence excludes from consideration any 15mer that contains an unidentified base code. Taking into account the exact numbers of 15mers (NE) actually considered (5,660,529,970 for HGP-nr and 5,307,364,024 for Cel vs. 6 Gb in the estimate above), and still assuming p = 0.1%, we obtain: ( = 5.3 (HGP-nr) and 4.9 (Cel), false positive rate = 0.22% (HGP-nr) and 0.27% (Cel), false negative rate = 7.9% (HGP-nr) and 7.4% (Cel).  These values remain compatible with the hypothesis mentioned in the text that the HGP and Cel teams sequenced genomes that are identical except for variations due to sequencing error and polymorphism at a combined rate of slightly more than 0.1%. Specifically, the sum 
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where fnCel(p) = Cel cu-15 false negative rate = 45(1−e−(p/3) and ( = NE(Cel)/415, and fnHGP-nr(p) is the corresponding function for HGP-nr, is minimized at p = 0.138%.  In this expression, the values 0.114 and 0.109 are the exact values of the ratios of actually counted unshared cu-15s to actually counted total cu-15s for Cel and HGP-nr, respectively, and replace the approximate value of 11% used in the text. 

We describe a basis for another alternative estimate of cu-15 false positive and false negative rates below.  

Additional unique 15-mer results

In addition to searching for cu-15s in HGP-nr and Cel (cited in text), we analysed cu-15s in HGP-all.  We found 99,605,580 cu-15s in the 4.8-Gb HGP-all sequence.  This is smaller than the 169,609,634 cu-15s found in the 2.9-Gb Cel sequence and the 160,311,078 cu-15s in the 2.9-Gb HGP-nr sequence, reflecting the higher redundancy of HGP-all.  Similarly, we found 1,118,718 cu-15s in HGP-all among the 10,292 mRNA sequences from the NCBI RefSeq database1, compared to the 2,526,912 found in Cel and the 2,372,185 found in HGP-nr. Again the Cel and HGP-nr results are comparable, whereas the HGP-all results presumably reflect sequence redundancy. 
Redundancy aside, the cu-15s representing mRNAs identified in HGP-all passed a more stringent test for uniqueness by being compared to unfinished sequence not included in the full assemblies, so they represent more conservative choices for probes specific to mRNA sequence. We extended these results by identifying 89,784 mRNA 15mers that are unique in the combined sequence of 8,886 ‘model nucleotide’ mRNAs annotated in HGP-nr, their associated HGP-nr contigs and the complete HGP-all sequence. These cu-15s should contain unique splice junctions because such junctions should not appear in continuous genomic sequence and appear only once in the mRNAs.  They therefore represent a potential source of hybridisation probes specific to transcript splice variants and thus an important resource for microarrays and other high-throughput RNA analyses.

Poisson estimates of unique 15mers do not correspond closely to actual cu-15 counts, demonstrating the limitations of the assumption of Poisson statistics in the formulas given above. According to Poisson statistics, the number of unique 15mers expected in a sequence is ~ 415( exp(-() = ~16,000,000, using the estimate ( =~ 6 over a full genome. This is only ~10% of the cu-15s actually found.  The much larger actual cu-15 counts may result from the high amount of repetition in the human sequence, and we may attempt to measure the extent of repetition using these cu-15 counts.  As a first approximation, suppose that the human genome consists of a fraction r of highly repetitive sequence (e.g., Alus, LINEs, etc. plus stretches of low complexity sequence), and a fraction 1-r of sequence that is effectively random, and that the number of distinct 15mers in the highly repetitive fraction is negligible compared to the number in the random fraction.  Supposing, further, that this random fraction of size ~(1-r)*6Gb is governed by Poisson statistics, the ( value for this distribution will be ~(1-r)*6Gb/415, and the expected number of cu-15s in the genome will be ~ 415(exp(-().  Fitting this model to the ~165,000,000 cu-15s actually counted, we may then estimate r = ~0.47; i.e., that about half of the human genome is repetitive sequence.  (J. Hughes, personal communication).  The corresponding ( = ~2.96 may then also be used to provide a second set of alternative estimates of cu-15 false positive and false negative rates; in particular, using the 0.1% combined sequencing error and variation rate initially assumed above, the cu-15 false positive rate is ~0.69% and the cu-15 false negative rate is ~4.4%.  Additionally, fitting the ratios of unshared cu-15s to total cu-15s against false negative rates based on ( = 2.96 using the method described above results in an estimate of variation between the Cel and HGP-nr sequences of 0.257% vs. the 0.138% described above.

DNA-binding-site motif searches

We derived gene upstream regions in public sequence by comparing all human reference mRNAs in the LocusLink database1 that were annotated as originating from an HGP-nr contig, and selecting only those mRNAs that exhibited a single alignment including the 5´ end of the mRNA with an E value lower than 1 ( 10−25 when the two were compared using BLAST 2 Sequences3. We took these to indicate the 5´ ends of genes, and the 3,352 upstream regions we used were those for which 4,000 upstream bases were available in the contig and contained no string of 30 consecutive Ns. The EGR-1 positive controls represented 17 genes among these 3,352 for which sites associated with experimental evidence have been reported. Information on these positive controls is given in Table Supp-1.

Table Supp-1: EGR-1 positive controls

	Gene Name
	GenBank Accession Number (mRNA)
	M1EGR-1 sites
	M2-EGR-1 sites

	ADA
	NM_000022
	8
	1

	CD44
	NM_000610
	1
	1

	CSF1
	NM_000757
	1
	1

	F3
	NM_001993
	3
	1

	FCER2
	NM_002002
	1
	1

	FGF2
	NM_002006
	3
	0

	FLT1
	NM_002019
	3
	1

	HOXA4
	NM_002141
	2
	0

	HXB
	NM_002160
	1
	0

	ICAM1
	NM_000201
	2
	4

	NEFL
	NM_006158
	1
	1

	NGFR
	NM_002507
	2
	0

	PDGFB
	NM_002608
	2
	2

	PNMT
	NM_002686
	4
	1

	SYN2
	NM_003178
	3
	1

	THBS1
	NM_003246
	3
	2

	TNFRSF6
	NM_000043
	0
	2


Positive control genes for EGR-1 matrix searches.  Provided are the gene names, GenBank Accession Numbers for the mRNA, and the numbers of EGR-1 sites according to the M1EGR-1 and M2EGR-1 matrices. 

HGP-based random controls comprised 25 sets of 3,352 4,000-bp sequences randomly chosen from HGP-all phase 3 sequence containing no strings of 30 consecutive Ns. Cel-based random controls comprised 10 sets of 3,352 4,000-bp sequences randomly obtained from Cel containing no strings of 100 consecutive Ns. 

Except for the middle three bases of the EGR-1 motif, motifs were scored by the formula [image: image4.wmf])
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  where p represents a position of an alignment of sequences used to generate the motif, b(p) the base corresponding to position p in the sequence being scored for the motif, fb(p) the fractional abundance of base b(p) at position p in the alignment, and cb(p) a pseudocount for b(p) based on sequence GC content. For matrices M2EGR-1 and M1CRX, local GC content was taken into account by adjusting cb(p) on the basis of a 401-nucleotide window centred on the beginning of the sequence site being scored: Specifically, ten buckets of GC content were considered (0-9.9%, 10-19.9%, … 90-100%) and a score was computed for a site by using the  cb(p) corresponding to the mean value of the bucket containing the site’s actual local content (5%, 15%, …, 95%).  For the middle three bases of EGR-1 in M1EGR-1 and M2EGR-1, values of fb(p) and cb(p) were used that represented the fractional abundances of the entire base triplet, where the fractional abundance was derived from affinities measured in microarray experiments in which phage-displayed EGR-1 binding domains were allowed to interact with oligonucleotide sequences containing all possible middle triplets and consensus sequences for the other triplets. This allowed matrix searches to take into account observed nonindependence of these bases on binding affinity (M.L.B. and G.M.C., manuscript in preparation). See the references cited in the article for fb(p) values for other EGR-1 positions and for the CRX motif.  For M1EGR-1, a site was reported when its score met or exceeded the threshold 0.6. For M2EGR-1, a site was reported when its score was among the top 500 scores possible for a sequence given its GC content bucket.  For M1CRX, a site was reported when its score was among the top 150 scores possible given its GC content bucket.

Table 1 of the article text provides a statistical analysis of site distributions across the various sequence sets based on t tests.   Since averages of numbers of sites are being compared and averages of n terms converge on a normal distribution as n((, the t test prerequisite of a normal distribution is partially addressed.  However, the underlying distributions of numbers of sites are highly non-normal so we verified our conclusions using Wilcoxon rank-sum tests.  Though probabilities generated by the Wilcoxon tests were all lower than those reported for t tests in Table 1, conclusions regarding the statistical significance of comparisons of the distributions were unaffected.

The difference between the number of sites of the two potential CRX positive control genes rhodopsin and phosducin and the 3,352 upstream sequences and random controls was assessed as significant by noting that the 95th percentile of each of these distributions for the number of sites per sequence was 1.  Both genes had at least 2 sites.  Preliminary work with the 67 CRX potential positive controls mentioned in the text has focused on 19 genes (including rhodopsin and phosducin) whose upstream regions we extracted based on model nucleotide annotations.  These 19 genes exhibited 0.63 +/- 1.16 sites per upstream sequence (average +/- standard deviation).  Both a t test and a Wilcoxon test show this to be significantly greater than the average number of sites in the up3352 sequences (0.16 +/- 0.40) (P value = 0 for t test, 0.0178 for Wilcoxon test).  The significance of comparisons with the rand-HGP and rand-Cel sequences is unclear; the 19 genes exhibit a significantly greater average number of sites according to the t test but the distributions are not significantly different according to the Wilcoxon test.  Wilcoxon and t tests were computed using SPLUS-2000 software.

Larger sets of upstream sequences

We are deriving larger sets of upstream sequences through use of a system that extracts user-specified amounts of upstream sequence for a user-specified input set of mRNA sequences.  The system first BLASTs2 each mRNA sequence against a user-specified set of databases.  For those sequences with a database alignment below a specified E-value, the system then looks for alignments with a (possibly higher) E value that contains the 5’ end of the mRNA, an operation that may entail use of  ‘BLAST 2 sequences’3.  The system then extracts upstream sequence from the database based on these alignments, excluding cases where there is insufficient upstream sequence available to meet the user request or where the upstream sequence contains long continuous strings of Ns representing gaps.  The upstream sequences returned contain upstream sequences of paralogs of mRNAs in the input set, as well as similar pseudogenes.   Further information on this system will be made available on the Church Lab web page http://arep.med.harvard.edu.

Using this method, we developed 7,964 upstream sequences from the set of 10,292 RefSeq1 mRNA sequences (excluding 175 apparent duplicate sequences) by searching against the HGP-nr database.  Upstream sequences were extracted for mRNAs that had a BLAST2 alignment against an HGP-nr sequence with E-value ≤ 1e-100 (corresponding to a segment of at least 190 bases), and for which the 5’ end of the mRNA had one or more alignments starting within the first 10 bases with an E-value ≤ 10.  Upstream sequences containing a string of ≥ 101 Ns were excluded.  Though we obtained 12,180 upstream sequences from 6,679 mRNAs (see Fig. Supp-1), 14 mRNAs were associated with > 50 upstream sequences (max = 686), 32 had > 20 sequences, and 48 had > 10.   mRNAs yielding many upstream sequences may contain repeat elements (e.g., 83% of NM_018432, the mRNA that yielded 686 upstream sequences, is identified by RepeatMasker4 as a LINE element). The set of 7,964 comprises all sequences derived from mRNAs with <= 10 upstream sequences.  mRNAs in this set generated an average of 1.2 upstream sequences.
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Figure Supp-1: Upstream sequences derived from 10,117 RefSeq1 mRNAs.

Histogram of counts of RefSeq1 mRNAs which yielded specified numbers of candidate upstream sequences from procedure described in the text.
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