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We report steps toward the systematic management, standardization, and analysis of functional genomics data.
We developed the ExpressDB database for yeast RNA expression data and loaded it with ∼17.5 million pieces of
data reported by 11 studies with three different kinds of high-throughput RNA assays. A web-based tool
supports queries across the data from these studies. We examined comparability of data by converting data
from 9 studies (217 conditions) into mRNA relative abundance estimates (ERAs) and by clustering of conditions
by ERAs. We report on generation of ERAs and condition clustering for non-microarray data (5 studies, 63
conditions) and describe initial attempts to generate microarray-based ERAs (4 studies, 154 conditions), which
exhibit increased error, on our web site http://arep.med.harvard.edu/ExpressDB. We recommend standards for
data reporting, suggest research into improving comparability of microarray data through quantifying and
standardizing control condition RNA populations, and also suggest research into the calibration of different
RNA assays. We introduce a model for a database that integrates different kinds of functional genomics data,
Biomolecule Interaction, Growth and Expression Database (BIGED).

Ever-growing amounts of sequence data for numerous
organisms, combined with readily available technol-
ogy for large-scale expression studies on the basis of
oligonucleotide arrays, DNA microarrays, Serial Analy-
sis of Gene Expression (SAGE), and other techniques
(Velculescu et al. 1995; Lockhart et al. 1996; DeRisi et
al. 1997), has led to the rapid accumulation of large
expression data sets and the development of the field
of functional genomics. Functional genomics has been
contrasted as having a systematic, genome-wide ap-
proach to the collection and analysis of biological data
compared with more traditional methods, which focus
in depth on particular genes, proteins, or pathways
(Hieter and Boguski 1997). But despite rapid strides,
capped by a string of successful studies (see Table 1),
functional genomics has yet to develop a highly inte-
grated system of tools and methods such those used in
sequence analysis and structural genomics (Hieter and
Boguski 1997); for that, we must await development of
the three following components: general databases,
data standards, and integrated general-purpose analy-
sis tools. A comparison of the status of these fields with
respect to these components is given in Table 2. Note
that throughout this article sets of related experiments
and conditions assayed within them will be denoted by
series codes, which are defined in Table 1.

As these three components are dependent on each
other and must coevolve, the right mixture will only
come together with experience. We hope to jump start

the process by describing here the working prototypes
of parts of the required systems and examples of what
can be done with them. Specifically, we describe
ExpressDB, a general database for RNA expression data
that has been loaded with data from 11 yeast studies
using three different kinds of high-throughput RNA
level assays (see Table 1). We also describe EXD, an
integrated web-based application that supports user
queries of ExpressDB data. ExpressDB and EXD differ
from existing research-specific databases (see web sites
on Table 1) in that they represent and manage data
from multiple studies, and complement databases such
as ArrayDB (Ermolaeva et al. 1998) by managing data
from multiple kinds of RNA level assays.

In each study whose data were loaded into
ExpressDB, data were collected and prepared in ways
appropriate to the study’s particular experimental de-
sign. Because designs and methods are not generally
coordinated across studies, data from different studies
are not always easily compared. This has no impact on
the success of each study individually, but data com-
parability assumes increased importance in a database
context in which comparability improvements can
translate into simpler and more meaningful queries,
more efficient database structures, and opportunities
for more effective data mining. To gauge comparability
of currently available data, we therefore formulated
what we considered to be an attainable ideal and as-
sessed what would be required for the data on Ex-
pressDB to meet it. We propose specific recommenda-
tions on the basis of this assessment (see Discussion).
We defined our ideal state of data comparability to be:
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(1) All RNA expression data are provided in the form of
estimated relative abundances (ERAs) of a defined set
of functionally distinguishable RNA fragments (FDRs)
which, in the present case, we take to be RNAs corre-
sponding to ORFs. An ORF ERA represents the frac-
tional abundance of the ORF’s RNA with respect to the
total population of ORF RNAs in cells in a particular
experimental condition (defined by cell strain and en-
vironmental history). (2) Analytical tools used to mea-
sure data comparability confirm that similar condi-
tions have similar RNA expression profiles, regardless
of which RNA assays are used for data collection. The
rationale for (1) is that ERAs are intuitive and unam-
biguous measures of RNA level that are theoretically
directly comparable across conditions regardless of ex-
perimental methodologies.

In assessing ExpressDB data against this ideal, we
converted as much data on ExpressDB as possible to
the form of ERAs, and explored clustering of condi-
tions by ORF expression profiles as a tool for analyti-
cally investigating data comparability. We undertook
these steps for data generated from oligonucleotide ar-
rays (4 studies, 60 conditions) SAGE (1 study, 3 condi-
tions), and microarrays (4 studies, 154 conditions),
generating a set of ORF ERAs for 217 conditions. Issues
with microarray data currently make it difficult to
compute ERAs from them and our best effort resulted
in microarray ERA values that exhibit increased vari-
ability compared with corresponding ratios (coefficient
of variation of ERAs = 3.3 times that of ratios) (see
Results). We focus here on methods and results for
Affymetrix and SAGE data. Readers interested in our
microarray results may consult the supplemental ma-
terial on our web site http://arep.med.harvard.edu/
ExpressDB. A file containing ERAs for 213 conditions—

all except for four not previously published (Coh)–may
be downloaded from the same web site. The ERA file
has not been loaded into ExpressDB, which contains
only original data, but has been loaded into a separate
database on our web site to allow it to be queried easily.

RESULTS

Database
ExpressDB is a relational database for RNA expression
data. We implemented it using Sybase SQL Server
11.0.3 on a shared DEC 3000 server running DEC Unix
4.0D. We conceive of ExpressDB as a generalized two-
dimensional table that can subsume individual tables
of expression data reported by researchers. We provide
a high-level logical data model for the ExpressDB da-
tabase and an example of how it operates as a gener-
alized two-dimensional table in Figure 1. That figure
also presents names of ExpressDB tables that will be
used throughout this article. Note that names of these
tables are always capitalized (e.g., Measure).

We developed a utility program EDBUpdate to
load data from individual tab-delimited files (load files)
into ExpressDB. Load files must present a systemati-
cally collected set of measurements or descriptive in-
formation for a series of ORFs, in which each line of the
file presents information for an ORF and each column
a particular measurement or information field. Ex-
amples of measurements are numerical values repre-
senting ORF mRNA abundance and data-quality indi-
cators. An ORF description field would be an example
of an information field. Measurement columns are rep-
resented by ExpressDB Measure records. Using EDBUp-
date, we performed loads of all available data files as-

Table 2. Comparison of Status of Functional Genomics

Functional genomics Sequence analysis/structural genomics

Databases flat files or databases developed by individual
researchers for each study. Centrally managed
databases in initial development.a

centraly managed, global sequence databases used
by entire research communities

“Straw man” database standards proposed
(Bassett et al. 1999)

databases and standards established; e.g., GenBank,
PDB, SwissProt (Bernstein et al. 1977; Bairoch and
Apweiler 1999; Benson et al. 1999)

Data standards no uniform standards for data reporting (Bassett
et al. 1999)

uniform standards for sequence and structure
submission, partially or completely automated
(e.g., BankIt for GenBank, ADIT for PDB)

different data reported by different
methodologies (see text)

reported sequence data independent of sequencing
methodologies

Analysis tools clustering and fold change analysis emerging as
standard tools, but tools only partly integrated
with databases

standard search tools such as Blast (Altschul et al.
1990) fully integrated with databases

Comparison with sequence analysis/structural genomics regarding integration of databases, data standards, and computer analysis
tools.
aNational Center for Biotechnology Information (1999); European Bioinformatics Institute (1999).

Aach et al.

434 Genome Research
www.genome.org



sociated with the studies described in Table 1 into the
database as well as data from two others (Eisen et al.
1998; Marton et al. 1998). ExpressDB contains >17.5
million pieces of information. Other statistics on the
database are given in Table 3.

Load files downloaded from public sources often
required minor editing to put them into the proper
format for loading. For instance, files presenting data
collected with Affymetrix oligonucleotide arrays often
give the ORF and common gene name in the same

column separated by a (/), and we had to separate these
into distinct columns. More extensive work was re-
quired to load the SAGE-based expression data from
Vel because data from SAGE is in the form of counts of
tag sequences in cDNAs, whereas ExpressDB imposes as
a structural requirement that data be indexed by ORF.
A key issue for this indexing is that some SAGE tag
sequences cannot be assigned to a unique ORF. As a
result, for each SAGE condition, we computed and
loaded into ExpressDB both a minimum and a maxi-

Figure 1 Logical data model of ExpressDB and its usage as a generalized two-dimensional table. (a) High level logical data model.
Rectangles represent tables in the database and connecting lines represent database table relationships as described in the legend and
as per Teorey (1994). (b) Use of Express DB as a generalized two-dimensional table. Database load files are usually in the form of tables
with each line dedicated to an ORF or control probe and each column to a measurement, computed value, or descriptive field. The
ExpressDB ORF table contains records for all ORFs or control used by any load file, and each measurement column from each load file
is represented by a Measure record. Measure records associated with a related set of experiments, especially measures reported by a single
literature reference, are all linked via a database relationship to a common Expression Data Set record, although multiple Expression Data
Set records are used for some references. Measurement column values for each ORF for an experimental data series are given in Expression
Data Point records that are linked to their ORF and Measure records via database relationships. To accommodate different formats of
column values, five different Expression Data Point tables are available, each supporting a different format.
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mum tag count for each ORF, in which the minimum
count includes only counts of tags uniquely assignable
to the ORF (which we call unambiguous tags) and the
maximum count includes these plus the counts of
tags shared with other ORFs (which we call ambiguous
tags). Additional details may be found on the Ex-
pressDB database in the Expression Data Set record for
the Vel experiments.

Database Query Application
Our web-based query interface for ExpressDB, the EXD
system, can be accessed at http://arep.med.harvard.
edu/ExpressDB/. A JavaScript 2.1-supporting web
browser such as Microsoft Internet Explorer 4.0+ or
Netscape Navigator 4.0+ is required. The logical flow of
the EXD system is depicted in Figure 2a. The main line
of this logic is that the user is prompted for successively
more detailed specifications concerning the query,
starting with the Expression Data Sets (see Fig. 1) of
interest, moving on to the Measures of interest within
these Expression Data Sets, and finally to conditions
that must be satisfied by the ORFs or their Measure
values. ExpressDB allows Expression Data Set and Mea-
sure records to be marked private and these are not
offered for user selection by EXD; this option has been
used for the Coh set of experiments that are not yet
published. The query conditions offered for user speci-
fication are sensitive to the data format of the Mea-
sures; thus the user is prompted for text matching
specifications when a Measure has a character format,
and with numerical equalities and inequalities for nu-
merical formats. Statistical specifications may also be
indicated for numerical measures, for example, it is
possible to ask for all ORFs for which the value of a
measurement is greater than two standard deviations
from the mean. It is also possible to ask for only those
ORFs that are either in or not in a group of ORFs de-
fined in the ExpressDB ORF Group table. To demon-

strate this capability, we loaded
this table with 207 functional
groupings of yeast ORFs de-
fined on the Munich Informa-
tion Center for Protein Sciences
(MIPS) database (Mewes et al.
1999). The output of ExpressDB
is given in either a tab-delim-
ited or formatted form. Tab-
delimited output can be copied
from the screen and pasted into
desktop applications like Excel
(Microsoft, Redmond, WA) for
further analysis. We consider
this a rudimentary form of in-
tegration with and pipelining
to downstream computer

analysis tools. Additional information on querying the
database can be found on the web site mentioned
above.

Figure 2b provides an impression of what it is like
to use EXD to perform a typical ExpressDB query. On
entry to the system, the user is presented with a form
listing data sets available on the database (Fig. 2b, step
1). The user selects one or more data sets; here the
Der_diaux and Der_tup data sets have been selected
(see Table 1). On clicking the Submit button, the user is
brought to the next form (Fig. 2b, step 2) which
presents information fields and Measures available on
the database for the selected data sets, and the user
chooses the ones he or she wishes to see. Here, the user
has asked to see the information field SGDID (Saccha-
romyces Genome Database identifier) (Cherry et al.
1999) and all of the ratios from the two selected data
sets (two from Der_tup and seven from Der_diaux) that
represent an ORF’s fold change of mRNA abundance in
an experimental condition relative to its control con-
dition. On clicking the Submit button, the user is next
brought to a form (Fig. 2b, step 3), which allows entry
of query specifications. In this example, the only speci-
fication provided is that the microarray ratio from the
last Der_diaux condition must be >1 S.D. above the
mean for this Measure. This will cause EXD to display
all selected information fields and Measures for only
those ORFs meeting this specification. The biological
meaning of this particular specification is that the user
wishes to see data for only those ORFs that are at least
moderately induced in ethanol, as the last Der_diaux
condition represents the end of a diauxic shift time
series during which the yeast cells have consumed all
of the glucose originally available in the medium and
are growing on ethanol at the end of the shift (DeRisi
et al. 1997). This illustrates the level of knowledge that
a user must have of the meaning of the data sets and
Measures on the database to make effective use of the
EXD system. The design of the database allows descrip-

Table 3. ExpressDB Statistics

Expression Data Set records 30
References supplying load files 11
Measure records 2503
Expression Data Point records 17515209
ORF records 7614
ORFs with multiple values for at least

one Measure
2277

ORF statistics • 7084 SGD-recognized ORFs
• 530 others (including non-yeast controls)

Database size 800.7 Mb (570.8 MB data + 229.9 MB indices)

Statistics are as of June 4, 1999. The references from which load files were obtained comprise
those cited in Table 1 plus two others (Eisen et al. 1998; Marton et al. 1998). Several of these
were recorded under multiple Expression Data Set records. ORF records comprise more than
actual yeast ORFs but also represent control features for which data is reported by RNA
collection methods as well as some non-ORF entities loaded with ORF Group and Saccharo-
myces Genome Database (SGD) information (Cherry et al. 1999).
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Figure 2 Logical flow through the EXD query system and ex-
ample of EXD query. (a) Logical flow through EXD query system.
Boxes correspond to forms and web pages produced by the sys-
tem. Arrows correspond to movements through the system avail-
able through hotlinks and buttons on the forms and pages. Num-
ber in circles indicated forms and web pages depicted in the
example of an EXD query in b of this figure. (b) Illustration of an
EXD query provided to give an impression of EXD system usage.
(1) A user selects two data sets from the database, (2) selects an
information field (SGDID) and nine Measures from these data
sets, (3) specifies a query condition, and (4) obtains results. Forms
and web pages shown in diagram are versions of actual EXD
pages that have been reduced in size, abridged, and edited to
highlight key features. Details pertaining to the example are
given in the text.
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tive information about data sets and Measures to be
stored so that users may obtain this knowledge directly
from the database itself. When the user clicks
Submit on the query specification form, the EXD sys-
tem processes the query. This may take several min-
utes, during which processing messages are displayed
by the system (not illustrated in Fig. 2b). When pro-
cessing is complete, the user clicks on a hotlink to see
the results (Fig. 2b, step 4).

We believe the EXD system to be the first query
system that allows users to query simultaneously any
of the expression data reported by experiments associ-
ated with different literature references and return the
results collated by ORF name. Fundamentally, this de-
rives from the fact that all of the data has been col-
lected in one database, but it is also supported by
EXD’s ability to navigate ExpressDB’s generalized two-
dimensional table structure. At this time, however, we
recommend use of EXD only for relatively simple que-
ries involving ∼10 or fewer Measures over all or a group
of ORFs, partly because of performance issues with
more complex queries and the database’s shared com-
puter environment, and partly because we need to de-
velop an interface that makes it easier for users to find
data items of interest from a set of >2000 available
Measures and then specify query conditions for them.

Generation of ERAs
Generation of ERAs is straightforward for data derived
from Affymetrix oligonucleotide arrays and SAGE (see
Methods), but microarray-derived data present a sig-
nificant issue. Microarray-based experiments simulta-
neously collect intensity levels of fluorescently labeled
cDNAs derived from an experimental condition, and
intensity levels of cDNAs, labeled with a different fluo-
rophore, derived from a control condition. The two
cDNA preparations are hybridized in parallel to the
same probe sequence spots on the array (DeRisi et al.
1997). Ratios between background-subtracted experi-
mental and control condition intensities are used for
data reporting and analysis because they compensate
for several sources of bias and noise in intensity results,
including ORF-to-ORF variations in labeled nucleotide
incorporation (bias), ORF-to-ORF variations in effi-
ciency of the PCR reactions used to generate the probe
sequences spotted onto the arrays (bias and noise), and
spot size and shape variations (noise). Microarray ra-
tios differ from ERAs in that they are fold changes of an
ORF RNA level in an experimental condition relative to
a control condition, whereas ERAs are fractional abun-
dances of an RNA in a single condition. Moreover, mi-
croarray ratios cannot be converted into ERAs; when
total RNA levels are roughly constant, microarray ra-
tios may be identified with ratios of experimental con-
dition ERAs to control condition ERAs, neither of

which can be determined from the ratios without prior
knowledge of the other. Affymetrix- and SAGE-based
experiments are not subject to this difficulty because
neither require measurements relative to a control con-
dition. Experiments using Affymetrix arrays typically
report ORF expression level measurements as averages
of differences in background-subtracted intensities of
fluorescently labeled sample cRNA or cDNA hybridized
to probe sets of ∼20 perfect match (PM) and mismatch
(MM) oligonucleotide probes for the ORF (average PM–
MM). Sequence rules for probes and the precision of
the oligonucleotide synthesis process control for noise
and bias, reducing the need for reporting relative to a
control condition RNA sample; mismatch probes,
which differ from their perfect match counterparts by
a single base, control for cross-hybridization (Lockhart
et al. 1996). SAGE experiments rely on sequencing of
cDNA tag sequences rather than hybridization, elimi-
nating probe-, hybridization-, and label-based varia-
tion, and use procedures that control for tag sequence
amplification biases (Velculescu et al. 1995, 1997).
Again, only a single condition’s RNA sample is re-
quired. As noted above, although we computed ERAs
for data sets derived using all three RNA assays, we only
report here on generation of ERAs for Affymetrix- and
SAGE-derived data. A discussion of microarray-derived
results may be found on our web site.

Other issues that complicate both generation of
ERAs and comparisons of data generally include (1) the
frequent reporting (see Table 3) of multiple measure-
ment values for an ORF from single experimental or
control conditions derived from multiple spots for an
ORF on a microarray or multiple probe sets for an ORF
on an Affymetrix array, which raises the question of
how values should be combined or selected for further
analysis, and (2) use of different ORF names across dif-
ferent sets of experiments, making matching of ORF
data across experiments difficult.

In Affymetrix-based experiments, multiple values
for an ORF arise from distinct probe sets for the ORF
that are distinguished by their probes being located to
different exons or other general probe set characteris-
tics. We found different types of probe sets to have
different properties. For instance, we computed an ag-
gregated measure (see Methods) of the ratio of average
PM–MM values of exon 1 probe sets against those of
exon 2 probe sets from values given in the Hol and Cho
sets of experiments, and found that in both cases, exon
1 probe set values were, in aggregate, ∼0.6 of exon 2
probe set values (Hol: N = 90 ratios = 96 ratios–6 outli-
ers; Cho: N = 93 ratios = 100 ratios–7 outliers; S.D. = 0.4
for each distribution). When presented with a choice
of expression measurements for the same ORF with
different values, one would ideally like to identify and
use the measure of highest quality, but the fact that
exon 1 probe sets have the property of yielding smaller
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measurement values than exon 2 probe sets does not
imply that exon 1 probe sets are of less quality. Our
strategy for consolidating multiple Affymetrix probe
set values therefore focused on consistency. Because
most probes for ORFs with single probe sets are taken
from the 38 ends of ORF sequences, we decided to
handle ORFs with probe sets for multiple exons by us-
ing the exon 2 values instead of exon 1 values. We also
avoided probe sets with special feature set indicators
where possible (see Methods). Affymetrix GeneChip
software returns a “presence call” that describes when
a gene product may be considered to be present, mar-
ginally present, or absent in an RNA sample (Lockhart
et al. 1996). An alternative strategy would have been to
consolidate multiple probe set values by taking aver-
ages of all probe set values called as present for an ORF.
However, we found exon 1 probe sets to be called ab-
sent significantly more often than exon 2 probe sets:
The average of number of absence calls, 5 the S.D. of
the average, for an exon 1 probe set over 42 Hol con-
ditions = 7.6 5 1.1 versus 4.4 5 1.0 for exon 2 probe
sets. Our exon-based consolidation strategy therefore
already, at least partially, takes presence calls into ac-
count while avoiding complications that would arise
with presence call-based strategy: (1) Not all Af-
fymetrix-based experiments report presence calls, (2) it
often happens that multiple probe sets for an ORF are
all marked absent whenever any one of them is (40% of
1594 multiple probe set values across the 42 Hol ex-
periments).

In the case of SAGE, multiple measurements for an
ORF arise from counts for distinct ORF SAGE tags. The
sum of counts for unambiguous tags for an ORF, main-
tained as minimum tag counts on ExpressDB, can be
safely attributed to RNA expression by that ORF, but
counts for ambiguous tags included in maximum tag
counts cannot be safely attributed to that ORF, as they
may have come from the RNAs of different ORFs that
happen to share the same tag (Velculescu et al. 1997).
To assure the most accurate possible ERAs for SAGE
conditions, we therefore only computed them for
ORFs, all of whose tags were unambiguous. The num-
ber of ORFs for which we computed ERAs in the three
Vel SAGE conditions (2122, 2211, and 2218) is thus
considerably smaller than the number we computed
for other conditions (5803 5 585 for all 217 condi-
tions). The ultimate origin of tag ambiguity in SAGE,
sequence similarity between genes, also affects oligo-
nucleotide array and microarray measurement of gene
expression through cross-hybridization of cRNAs and
cDNAs to ORF probe sets or spots.

In the end, we produced a file containing ERAs for
all ORFs for which there were usable data for 217 con-
ditions (60 Affymetrix, 3 SAGE, and 154 microarray).
The number of ORFs (identified by name) for which
data are provided in at least one condition is 6293. The

process of generating ERAs included steps to resolve
different names for the same ORF (see Methods), and
of these 6293 all but 94 could be identified with
SGDIDs . Wherever data for an ORF was not reported in
a condition, or an ERA could not be computed for an
ORF, a “null” value (empty field) is included in the
table for that ORF and condition. Because the maxi-
mum number of ORFs for which ERAs are reported in a
condition is 6221, all conditions contain some null
values; some conditions, like the SAGE conditions
noted above, contain large numbers of null values. As
noted above, the version of the file that may be down-
loaded from our web site contains only 213 conditions
(56 Affymetrix) because four conditions (Coh) have
not been published previously.

Clustering of Experimental Conditions
Although clustering of ORFs on the basis of expression
levels over sets of conditions has often been reported
(Cho et al. 1998; Eisen et al. 1998; Wen et al. 1998;
Tavazoie et al. 1999), clustering of conditions is less
common but of increasing interest, in part because of
its potential for classifying tumors (Weinstein et al.
1997; Alon et al. 1999; Perou et al. 1999). Here we used
condition clustering to investigate its potential as a
measure of comparability of data. The motivation for
considering condition clustering in this role is that
cells of similar strains in similar environmental condi-
tions should exhibit similar ORF RNA abundances, and
therefore similar conditions should yield high correla-
tion coefficients and small Euclidean distances be-
tween their ORF abundance profiles. Condition clus-
tering provides a convenient way of seeing such rela-
tionships in correlations and distances for large
numbers of conditions. We therefore hypothesized
that we should be able to find instances in which
clearly similar conditions were clustered together and
clearly dissimilar conditions were separated into differ-
ent clusters. We also used condition clustering to assess
the preliminary ERA values we generated for microar-
ray conditions and to compare them against microar-
ray ratios. Clustering of microarray ERA data is affected
by the increased variability of these preliminary values.
However, we found indications that condition cluster-
ing of microarray ratio data may be subject to biases
when clustering conditions from sets of experiments
using different control conditions. These biases did not
appear in the clustering of corresponding microarray
ERAs. We discuss these results on our web site.

When clustering ERA data, we should generally ex-
pect that conditions will tend to segregate into clusters
according to related series of experiments for two rea-
sons: First, conditions in related series frequently use
the same or similar strains and cell environments. Sec-
ond, differences in technique and equipment used in
different studies may have the effect of weighting in-
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dividual ORF abundances from different series differ-
ently. Both of these factors will tend to make condi-
tions in a related series more similar in ORF ERA profile
than conditions from different series. A diagram de-
picting the highest level 14 clusters of 217 conditions
grouped by similarity of pairwise correlation coeffi-
cients over transformed ORF estimated relative abun-
dances (see Methods) is shown in Figure 3. It is evident
that conditions cluster mainly with other conditions
in the same related sets of experiments. To confirm
that this and other observations below are not simply
artifacts of the clustering algorithm, we also performed
clustering by an alternative method, the clustering of
conditions directly by transformed ORF ERAs rather

than pairwise correlation coefficients of conditions
over their ERAs (see Fig. 4 in the supplemental mate-
rials on our web site). In both exercises, we clustered
subsets of high-expressing ORFs that showed evidence
of induction across conditions, rather than clustering
over all ORFs, to reduce noise that might be introduced
from large numbers of low-expressing ORFs (see Meth-
ods). Despite some shuffling of clusters at the highest
levels, it remains true that conditions in the same re-
lated sets of experiments are found to be closer to each
other than to conditions in other sets. Details may be
found on our web site.

To assess the ability of condition clustering to
capture similarities and differences between experi-

Figure 3 Results of clustering 217 conditions by Pearson correlation coefficients over 1078 ORFs, plus high-level dendrogram showing
the 14 highest level condition clusters and their relationships in the clustering hierarchy. The 1078 ORFs exhibited high median relative
abundance over all conditions and showed evidence of induction or repression (see Methods). Conditions are presented symmetrically
as lines and columns of cells with each cell representing the correlation coefficient between two conditions over the log10 relative
abundances of the ORFs, expressed in standard units for the ORF over all conditions. Red values indicate negative correlation coefficients
and green values indicate positive correlation coefficients. Brighter red (green) values indicated more negative (positive) correlation.
Diagonal entries all represent correlation coefficients = 1 and are bright green. Dendrogram branch heights from top of the tree indicate
relative locations of the join creating the subcluster in the sequence of subcluster agglomerations that created the tree; thus, clusters at
the end of longer branches may be considered more similar than clusters at the end of shorter branches from the perspective of the
clustering algorithm. Arrows indicate branches that had to be truncated for this diagram. Cluster symbols are series codes (see Table 1)
except for the following: Coh/R = Coh + Rot (R). Hol+ts3 = all Hol conditions involving temperature-sensitive mutants except for
Hol_med6_ts_1, which is in the Hol∼ts3 group. (A replicate condition Hol_med6_ts_2, however, is in Hol+ts.) Hol∼ts3 = all Hol conditions
that do not involve temperature-sensitive mutants excepts for Hol_med6_ts_1. This cluster contains all control series as well as all
non-temperature-sensitive mutants. Other labels are for microarray-derived data sets. These are discussed on our web site.
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ments, we examined the Hol set of 42 conditions.
This set comprises 21 experiments with RNA polymer-
ase complex mutants and 21 corresponding wild-type
controls. Within this set of experiments, (1) the 21
experiments contain 10 pairs of replicated experi-
ments, and likewise the 21 controls contain 10 pairs of
replicates, making a total of 20 pairs of replicated con-
ditions. Nine of these 20 pairs of replicated condi-
tions are clustered at the leaf level in Figure 3
(P = 20⁄216 2 19⁄214 2 ? ? ? 2 12⁄200 = 8.4 2 10111), and
12 of these 20 are clustered at the leaf level in that
depicted in Figure 4 (P = 20⁄212 2 19⁄210 2 ? ? ? 2 9⁄190 =
1.4 2 10114). The significance of two conditions clus-
tering at the leaf level is that they are more similar to
each other than to any other conditions. (2) The Hol
series contains 13 conditions involving temperature-
sensitive RNA polymerase complex mutants that were
maintained at 37°C prior to RNA assay. All other mu-
tants and all control conditions were maintained at
30°C (see Hol web site listed in Table 1). In the cluster-
ing of Figure 3, 12 of the temperature-sensitive mutant
conditions segregate into their own cluster apart from
the rest of the Hol series. In Figure 4 (on our web site),
all 13 temperature-sensitive mutant conditions segre-
gate into a cluster of 15 that also contains two control
conditions. These clusters evidently reflect tempera-
ture effects. Together, these observations indicate that
condition clustering is effective at identifying similar
(here replicated) conditions, and that it is likewise ef-
fective at segregating conditions on the basis of impor-
tant environmental variables such as temperature.

DISCUSSION
The database and query tool described here represent
preliminary versions of tools required in an integrated
tool kit for exploring expression data. They can be
modified to make them more sophisticated and com-
plete. Some improvements involve relatively simple
technical fixes. The current version of ExpressDB is
yeast specific, but the design changes required to gen-
eralize it are small and an organism-general version
will soon be available. The key changes allow results to
be recorded for FDRs other than ORF RNAs, such as
ESTs, cDNAs, and noncoding RNAs, that are frequently
reported for higher organisms, and allow different sets
of FDRs to be registered for different organisms. The
EXD query system can also be modified to automati-
cally pipeline results to downstream analysis tools such
as clustering by gene and condition. Other technical
issues, such as system performance, will require ongo-
ing management. Whereas database software and ap-
plication tuning and equipment upgrades can improve
ExpressDB’s current performance, its current 17.5 mil-
lion records, resulting from only 11 sources, clearly
only represent the tiny beginnings of an anticipated
flood of expression data. Over time, more efficient da-

tabase technologies and algorithms will need to be ex-
plored to ensure maintenance of performance levels.
Standardization of data formats and contents (see be-
low) will also help improve performance by providing
opportunities to structure the database more effi-
ciently.

More involved issues raised by data comparability
concerns must be addressed through standards and ad-
ditional research. Here we propose several directions
for development on the basis of our results. Because
these directions apply beyond of the case of yeast, we
phrase them in terms of FDRs rather than ORFs

Develop Methods that Will Allow Sets
of Microarray-Derived Expression Data
to Be Directly Compared with Each Other
and with Sets of Expression Data Obtained
Using Other Methodologies
By dint of its flexibility, relatively low cost, and public
availability, microarray technology has made a huge
contribution to both the science of functional genom-
ics as a whole and to the number of RNA expression
data sets available for analysis; but the full potential of
these data will not be realized until methods are devel-
oped that allow microarray-derived ratios of FDR levels
in experimental conditions relative to control condi-
tions to be easily and directly compared with microar-
ray-derived ratios on the basis of different control con-
ditions, and with the results of other high-throughput
RNA assays. One possibility would be to encourage the
development of standard microarray control condi-
tions. If the RNA species in such standards are quanti-
fied for abundance, it would then also be possible to
generate ERAs from microarray-derived data. Some
ideas for this are discussed on our web site.

Test Different RNA Expression Assays on Common
RNA Samples to Determine Whether They Produce
Equivalent Results, and Develop Standard
Calibrations Where They Do Not
It is not enough that expression data collected with
different methodologies be expressible in a common
form such as ERAs; the actual data values must be
shown to be equivalent regardless of their methodol-
ogy of origin. We foresee a research project in which
RNA extracts from several test combinations of strains
and conditions are assayed on all key RNA expression
assays. Condition clustering of results by test sample
regardless of assay may be one good indicator of com-
parability of results and of the correctness of calibra-
tions. Protocols for sample preparation and labeling
may also need to be considered, as these, too, may
influence comparability of results. For instance, among
Affymetrix-based experiments, Cho generated labeled
double-stranded cDNAs, whereas Hol, Rot, and Coh
generated labeled single-stranded cRNAs. With the
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cDNA protocol, cDNAs from nearby adjacent or over-
lapping ORFs, especially convergent ORFs with 38-end
overlaps, could hybridize to both ORF probe sets, caus-
ing signal from one ORF to be reflected in both,
whereas this would not arise in the cRNA case. This
could be sufficient for data gathered from the same
sample RNAs using the two different protocols to seg-
regate into different clusters.

Establish Standards for Reporting Data that Cover
All RNA Expression Assays
On the basis of issues that arose in generating the ERA
file, we propose that researchers publish versions of
data files with the following characteristics:

1. Data are reported at the FDR level. Here this proved
non-trivial for SAGE. Our ExpressDB representation
of SAGE data in terms of minimum and maximum
SAGE tag counts provides one example of how FDR
level reporting may be accomplished for method-
ologies where the entities for which experimental
data is collected may not be uniquely assignable to
the functional RNA units chosen for data reporting
(see Methods). Corresponding uncertainties men-
tioned above about cross-hybridization of paralogs
for Affymetrix and microarray experiments affect
the accuracy of FDR-assigned values and may ulti-
mately be addressed by calibrating hybridization
with known family members.

2. Expression data is reported by publicly recognized
stable identifiers for FDRs rather than names (in this
case SGDIDs vs. ORF names). This would avoid the
need for name resolution when combining data
from different sources.

3. Data values considered to be in error (frequently
reported in microarray data) are excluded, and mul-
tiple nonerroneous values are consolidated into a
best estimate. This makes it easier to compare data
sets and also easier on the database itself. Mainte-
nance of multiple data values for an FDR in a con-
dition incurs substantial database overhead and can
lead to unexpected results in processing queries (see
the hotlink for Multiple ORF Rows in the help docu-
ment available from the EXD web query applica-
tion). Ideally, experiments should be replicated and
both central tendencies and variances of best esti-
mates should be reported. This could have been
done here for the Hol group of experiments.

4. Provide clear documentation on all reported mea-
sures describing their data sources, formulas used to
compute them, and their proper usage.

5. Provide clear documentation on strains and envi-
ronmental conditions for all data.

Some of these suggestions reaffirm the straw man stan-
dards of (Bassett et al. 1999) and, we hope, provide
some concrete directions for following them. We em-

phasize that we do not suggest that this should be the
only version of data that is published, but that such a
version be prepared for to support easy comparison
with other data sets. Availability of less processed
forms will allow other researchers to explore error
thresholds, characteristics of different probes for an
FDR, etc.

As we noted previously, improvements in data
comparability through establishment of standards for
expression data collection, preparation, and reporting
will make databases more useful. We emphasize that
this pertains not just to ExpressDB but to any RNA
expression database as the fundamental issue concerns
limitations on the ability to compare data meaning-
fully, not the computer structures by which it may be
stored and managed. Such improvements will also
help streamline and focus databases. Taking ExpressDB
as a case in point, in the absence of such standards,
ExpressDB has both too much and too little data. On
the too much side, a large number of the 2503 Measure
records defined in ExpressDB and several million asso-
ciated Expression Data Point (see Fig. 1) records are of
little general scientific interest. They cannot be ignored
because they are sometimes found to be essential to
interpreting the data (e.g., microarray spot quality in-
dicators); from there, general unclarity about data
fields and their potential use, plus often sketchy docu-
mentation that makes it hard to distinguish potentially
important from likely unimportant fields, offers no
practical alternative to loading all reported data. On
the too little side, information that is critical to inter-
preting expression profiles, especially strain and con-
dition descriptions, is maintained in ExpressDB only in
unformatted text. As functional genomics develops, a
database will be required that maintains strain and
condition information in a structured form that can be
queried precisely for such characteristics as the pres-
ence of particular alleles in the strain, certain com-
pounds in the medium, or treatments of the cell cul-
ture (e.g., heat shock). Moreover, ExpressDB’s indexing
of data at the RNA level, currently being generalized
from ORFs to FDRs, will require further generalization.
Not only are protein levels now being gathered on a
high throughput basis (Link et al. 1997; Futcher et al.
1999; Gygi et al. 1999a,b; Page et al. 1999), but func-
tional data on genomic features that do not generate
RNA may need to be gathered, such binding affinities
of proteins to regulatory DNA (Wang and Church
1992; Tavazoie and Church 1998). Phenotype informa-
tion such as growth rates of mutant strains will also be
of interest. To record such data will require indexing by
proteins (including modified proteins), regulatory
DNA, and strains in addition to FDRs. We have devel-
oped a logical model and some prototype components
of a Biomolecule Interaction Growth and Expression
Database (BIGED) that will enable many of these data
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to be integrated (J. Aach and W. Rindone, unpubl.).
The logical model may be downloaded from our web
site. ExpressDB and BIGED represent different tradeoffs
between flexibility and biological meaning. Whereas
ExpressDB flexibly allows any Measure cited in a load
file to be recorded on the database regardless of its
relation to and comparability with any other Measure,
at the cost of their unstructured proliferation, BIGED
defines structures for particular measures and biologi-
cal features and relationships between them that cor-
respond to their biological meanings, but requires
more standardization of data contents and formats.
We believe that both kinds of databases will be re-
quired as functional genomics advances.

METHODS

Database Model and Definitions
The ExpressDB database model and definitions were gener-
ated using PowerDesigner 6.1 (PowerSoft, Concord, MA). The
full model is available at our web site http://arep.med.
harvard.edu/ExpressDB/.

Database Loading
EDBUpdate was written in Perl and accesses the database
using the sybperl interface. (See http://www.mbay.net/
∼mpeppler/ for information on sybperl.) We edited load files
where necessary using text editors and Perl scripts to put them
into the required tab-delimited format with ORF names in a
dedicated column. ORF names were converted to upper case.
In some cases, we eliminated records from load files that
could not be identified as representing either ORFs or con-
trols. To enhance queriability of the data, we converted empty
column positions in ORF rows (null values) to non-null de-
fault values, where meaningful defaults could be clearly iden-
tified; otherwise, null values were loaded as null database
fields. To load SAGE data from Vel, we located SAGE tag se-
quences in yeast genome sequence downloaded from SGD
and assigned them to ORFs on the basis of SGD ORF tables
(both sequence and tables downloaded February 15, 1999)
following rules for ORF and strand matching from (Velculescu
et al. 1997). Because SAGE tags could not always be assigned
uniquely to a single ORF, we computed and loaded minimum
and maximum counts for each ORF as described in the text.

EXD Query System
EXD is a collection of Common Gateway Interface (CGI)
(Gundavaram 1996) modules written in Perl with the sybperl
interface. Some EXD CGI programs generate Javascript 1.2
code.

Generation of ERA File
Here we report methods used for generation of Affymetrix
and SAGE ERAs; we discuss generation of microarray ERAs on
our web site. We extracted average PM–MM values (Af-
fymetrix) and ORF tag counts (SAGE) from ExpressDB for all
Affymetrix and SAGE data sets listed in Table 1, along with
any relevant qualifiers (e.g., Affymetrix feature set identifiers).
We used a specially written batch extract routine for all Af-
fymetrix database extracts; for SAGE data, we used EXD to
extract only those ORFs for which counts were entirely un-

ambiguous (minimum count = maximum count) for all con-
ditions and only considered counts of 1 or more. We applied
a standard sequence of processing steps to each individual
load file, with variations as appropriate, to handle name and
SGDID resolution, multiple ORF value consolidation, and Af-
fymetrix threshold processing.

We standardized ORF names and assigned SGDIDs with a
program that matched load file ORF names against an extract
of the Name table of a prototype version of BIGED (J. Aach
and W. Rindone, unpubl.; see web site), which had been
loaded with all primary and alternate ORF names and all as-
sociations between ORF names and SGDIDs published on the
SGD database since August, 1998. Name resolution also de-
tected and matched hyphenation variants for some ORF
names. The name resolution program added additional col-
umns to the output name-resolved files that preserve an audit
trail of the different names consolidated to their target stan-
dardized names.

For Affymetrix-derived files, the aggregate measure of the
ratio of exon 1-based probe set values to exon 2-based probe
set values mentioned in the text was the outlier-excluded av-
erage, over all ORFs with both exon 1 and exon 2 probe sets,
of the ratio, for each such ORF, of the average over all condi-
tions (n = 42 for Hol, n = 17 for Cho), of the average PM–MM
values from an ORF’s exon 1 probe set, to the corresponding
average for the ORF’s exon 2 probe set. We consolidated Af-
fymetrix-based multiple probe set values for an ORF by exam-
ining Affymetrix probe set names and averaging the values of
whichever group of an ORF’s probe sets came first in the fol-
lowing sequence: (1) the probe set name is simply a gene
name unqualified by exon or special feature set indicator (_i,
_r, _f), (2) the probe set name is a gene name with an exon 2
designation with no special indicators, (3) the probe set name
is a gene name with an exon 1 designation and no special
indicators, (4) any other probe sets. Affymetrix probe set in-
dicators such as _i, _r, and _f indicate that a probe set departs
from desirable target rules for oligonucleotide probe sequence
or probe set selection (Affymetrix Technical Help Desk, pers.
comm.). The Rot Affymetrix-derived load file had already con-
solidated multiple ORF values and was exempted from this
consolidation step.

Following multiple ORF value consolidation, Affymetrix-
derived files with the exception of Rot were threshold ad-
justed to remove negative average PM–MM values. By and
large, these correspond to ORFs considered absent by Af-
fymetrix software (Lockhart et al. 1996); however, absence
indicators were not available for all load files and we ignored
them generally in favor of threshold adjustment. We per-
formed threshold processing by computing, for each condi-
tion, the fifth percentile (P5) of all consolidated ORF average
PM–MM values, and replacing any consolidated ORF average
PM–MM values for the condition <P5 with the P5 value; how-
ever, except for Cho many of the P5 values were still negative
and we used the fifth percentile of all positive values for them
instead.

We collated all individual normalized load files into a
single file using the standardized ORF names, combining all
name audit trail information from each individual file. This
file contained cleansed intensity and SAGE count values for
each ORF for each experiment, but intensities are still on dif-
ferent scales for each condition. Finally, we produced a con-
solidated ERA file by dividing each non-SAGE-derived ORF
intensity value by the total intensity value computed for its
column; for SAGE-derived values, we computed ERAs by di-
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viding each ORF count by the total number of non-rejected
SAGE tags counted for the condition (Velculescu et al. 1997).

Condition Cluster Analysis
We transformed ERA data in preparation for clustering using
a variant of procedures in (Tavazoie and Church 1998). For
the entire collection of 217 conditions for which ERAs were
computed (including microarray ERAs), we converted non-
null ERAs for each ORF in each condition to log10 values, first
adding the small value 0.000005 (equal to half the minimum
precision non-zero value in the file) to all non-null values to
eliminate zero values. We used logarithms to assure that in-
duction and repression were on the same scale in so far as
these are assessable through fold changes across conditions. If
an ORF with expression level l in condition 1 is induced at
fold change f>1 in condition 2 and repressed at the same fold
change level in condition 3, then the difference between lev-
els in 2 and 1 versus 1 and 3 is l(f 1 1) versus l(1 1 1/f), and
whereas the former term grows linearly with f and is un-
bounded, the latter term is hyperbolic and bounded within
the interval (0,l). Because both correlation coefficients and
direct clustering are based on difference terms, direct use of
estimated relative abundance values risks underrepresenting
the effects of repression (see also Eisen et al. 1998).

We then converted non-null log10 relative abundances
for each ORF to standard units across all conditions to gener-
ate standard unit log10 relative abundances (SULRA). We per-
formed the clustering of Figure 3 on Pearson correlation co-
efficients over ORF SULRAs between all pairs of our 217 con-
ditions. However, many ORFs have relative abundances at or
below the level of measurement noise and variation of their
SULRAs over conditions can be expected to reflect noise as
much as change in expression level. Also, some ORFs with
higher relative abundance varied so little across conditions
that difference terms between condition levels could also
reflect noise. We therefore considered subsets of ORFs exhib-
iting high relative abundance levels and evidence of sig-
nificant induction or repression as defined by two criteria:
(1) the median ERA of the ORF over all conditions >= a per-
centile threshold p of the median ERAs of all ORFs, and (2) at
least 10% of ratios of ERAs for the ORF over all pairs of
conditions >= a threshold r, in which this latter was evaluated
by ensuring that the ratio of the kth largest and kth
smallest relative abundance level for the ORF $ r, where
k = ceiling[sqrt(n(n11)/20)], where n = number of conditions
with non-null relative abundance values. We looked for sub-
sets with ∼1000 ORFs. We used a subset of 1078 ORFs selected
with P = 60 and r = 3 for Figure 3. Correlation coefficients
were clustered using trace clustering (Ward’s algorithm) in
SPLUS 4.5 (MathSoft, Seattle, Wa.) We color coded the dia-
gram using in Excel 97 (Microsoft, Redmond, Wa.)
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NOTE ADDED IN PROOF
The update of the design of ExpressDB to be organism-
independent, mentioned above, is now complete. De-
tails on the new design are on our web site.
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