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Quantitative Morphological Signatures
Define Local Signaling Networks
Regulating Cell Morphology
Chris Bakal,1,2,3*† John Aach,1* George Church,1 Norbert Perrimon1,2

Although classical genetic and biochemical approaches have identified hundreds of proteins that
function in the dynamic remodeling of cell shape in response to upstream signals, there is currently
little systems-level understanding of the organization and composition of signaling networks that
regulate cell morphology. We have developed quantitative morphological profiling methods to
systematically investigate the role of individual genes in the regulation of cell morphology in a
fast, robust, and cost-efficient manner. We analyzed a compendium of quantitative morphological
signatures and described the existence of local signaling networks that act to regulate cell
protrusion, adhesion, and tension.

Morphogenesis commonly relies on
the spatial and temporal regulation
of distinct groups of genes acting in

local signaling networks. The morphology of
a single cell also results from the spatio-
temporally regulated activity of signaling
proteins. For example, Rac-type guanosine
triphosphatases (GTPases) promote the for-
mation of protrusive lamellipodia at the lead-
ing edge of motile cells, whereas Rho-type
GTPases promote cortical tension and cell re-
traction at the rear of the cell through the
activation of the actomyosin machinery (1).
Both protrusive activity and cell body retrac-
tion are tightly coupled to the assembly and
disassembly of adhesive structures through
Rho signaling (2). Many signaling proteins
must act both upstream and downstream of
specific Rho GTPases in spatially distinct
subcellular local networks to translate extra-
cellular signals to changes in GTPase activa-
tion and ultimately in cellular morphology.
However, the components of these networks
and the precise role they play in regulating cell
shape remain largely unclear.

We performed a genetic screen of 249 gene-
overexpression or double-strandedRNA (dsRNA)
treatment conditions (TCs) using the Drosophila
BG-2 cell line to determine the roles of genes
acting in local networks to control distinct aspects
of cell morphology. BG-2 cells are highly motile
and exhibit many of the traits observed in mam-
malian fibroblasts and epithelial cells, including
the formation of integrin-based adhesions, polar-
ized lamellipodia, and coordinated retraction of
the cell body (3, 4); but unlike many mammalian
cell types, the growth of BG-2 cells is not
inhibited by contact with other cells. To analyze
the morphologies of cells in each TC, we used
protocol and image-processing techniques de-

signed to detect clear and complete boundaries of
individual cells and to quantitatively analyze the
shapes of these boundaries along with the in-
tensities and textures of their interiors. First, we
stochastically labeled samples with green fluo-
rescent protein (GFP) [supporting online material
(SOM)] to enable individual cells to stand out in
the crowded and overgrown samples, acquired
images of these cells using conventional fluores-
cence microscopy, and used software to identify
the boundaries of individual cells (Fig. 1A and
SOM). Although these techniques make lower
numbers of cells per sample available to sub-
sequent analysis as compared to other published
methods (5, 6), we preferred them because they
yielded detailed, high-quality empirical bounda-
ries instead of algorithmically determined approx-
imations. For each individual cell, we computed
145 different quantitative features that reflected
basic aspects of cell geometry, detailed aspects of
cellular protrusions, or the distribution of GFP
intensity within the cellular boundaries (Fig. 1B
and SOM). Altogether we analyzed 12,601
individual cells from our 249 TCs.

To transform our 145 features into biologi-
cally meaningful morphological indicators, we
trained a set of neural networks (NNs) to use
informative subsets of the features to discriminate
cells from particular reference TCs from sets of
other reference TCs (Fig. 1D and SOM). We
targeted seven TCs for NN training because they
produced phenotypes that were qualitatively dis-
tinctive and discernable from control cells (SOM).
For example, overexpression of an N-terminally
truncated form of the Rho guanine nucleotide
exchange factor (RhoGEF) SIF (DN-SIF), the
Drosophila ortholog of mammalian Tiam-1,
stimulates extensive lamellipodia formation, cell
spreading, and a general loss of tension, dem-
onstrated by the flat and thin appearance of the
DN-SIF cells (Fig. 2) (7). After training a DN-SIF
NN to distinguish DN-SIF cells from the cells of
our six other target TCs, we applied this NN to all
12,601 cells in our data set to score each of them
for this distinctive morphology (Fig. 1D). In ad-
dition to DN-SIF, we trained NNs for TCs treated

with overexpression constructs for RacV12,
RacF28L, RhoV14, RhoF30L, CG3799 full-
length, and DN-RhoGEF3. The seven TCs
selected for NN training included several for
which the underlying mechanisms responsible
for their phenotypes are not understood.

Finally, for each NN and TC, we calculated
a NN Z score (NNZ), which is the variance-
adjusted difference between the mean NN score
of all cells in the TC and the mean NN score of
all cells in our data set. Each NNZ is thus an
index of the morphology of an entire TC (SOM)
(Fig. 1E). For example, for cells in which
CG10188 (a RhoGEF) was targeted by dsRNA,
the NNZ for the DN-SIF NN was 0.76, which
indicates that CG10188 dsRNA induces a mor-
phology that is slightly more “DN-SIF–like”
than an equal number of randomly chosen cells
(which would have a NNZ of 0). In contrast, the
NNZ for DN-SIF cells using the DN-SIF classi-
fier is 26.77. Together, the seven NNZs com-
puted for each TC constituted a quantitative
morphological signature (QMS) of the TC
(Fig. 1E). A QMS is thus a high-order represen-
tation of the morphology of cells in a TC as a
vector of seven specific quantitative similarities
and dissimilarities with seven panels of refer-
ence cells with distinctive phenotypes.

Two-dimensional hierarchical clustering
(SOM) of 249 QMSs revealed that TCs, and in
particular RNA interference (RNAi) against indi-
vidual genes, fell into several distinct clusters.
QMSs with similar qualitative phenotypes clus-
tered tightly together (Fig. 2). We define “pheno-
clusters” as genes grouped at the highest node in
the clustering for which the cluster distance
metric (an average of uncentered Pearson corre-
lation coefficients) was greater than 0.80 and
term this a “cluster distance cutoff” (CDC) (Fig.
2) (8). A value of 0.80 was chosen as the CDC
because smaller cutoffs resulted in groupings of
visually diverse morphologies, whereas higher
thresholds resulted in the segregation of visually
similar morphologies into distinct clusters.

A large phenocluster was composed of TCs
that clustered because their QMSs have high DN-
RhoGEF3 NNZs (cluster 6). All cells in this
cluster were extremely round and had very few or
no protrusions of any type (Fig. 2 and fig. S18).
QMSs for p190RhoGAP, SCAR, slingshot, arma-
dillo, ankyrin, Sop2, and RhoGEF3 RNAi were
clustered together. Moreover, we observed an
enrichment in this cluster for RNAi against genes
involved in Rap signaling (three of six genes in
the data set). The finding that depletion of either
SCAR, the cofilin phosphatase Slingshot, or
Sop2 resulted in defects in protrusion is consist-
ent with the known function of these three pro-
teins (4, 9–14). Gef26 and its downstream target
Rap1 function in the formation of adherence
junctions inDrosophila (15–17) and have recently
been observed to be required for cell spreading
andmigration ofDrosophilamacrophages (18). In
mammalian systems, p190RhoGAP acts down-
stream of integrins and adhesions to promote cell
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spreading (19). Thus, our method successfully
identified two distinct but coupled signaling path-
ways that regulate the formation of protrusions.
We anticipate that Drosophila RhoGEF3 plays a
critical role in the regulation of adhesion, because
overexpression of a N-terminally deleted form or
inhibition by dsRNA have similar QMSs. DN-
RhoGEF3 is not likely to be constitutively
activated (20) but may promote cell rounding by
acting in a dominant-negative manner toward
endogenous RhoGEF3 signaling.

A second phenocluster contained a group of
TCs that co-clustered with RhoF30L and had
high RhoF30L NNZs (cluster 8). These cells dif-
fered qualitatively from cells in theDN-RhoGEF3
phenocluster by virtue of the fact that cells in this

cluster did have some visible, but poorly formed,
lamellipodial protrusions (Fig. 2 and fig. S18).
dsRNAs in this cluster may target genes that
specifically promote the formation of lamellipo-
dia, and RhoF30L (an activated form of Rho that
cycles between GTP- and GDP-bound states)
may inhibit this process. In support of this notion,
dsRNAs targeting twinstar, capt, and ARC-p20
were part of this cluster, representing an enrich-
ment in genes that have been identified in pre-
vious screens for genes required for lamellipodia
organization (three of seven genes) (10). Given
the fact that lamellipodia formation occurs after
the formation of adhesion, protrusion, and actin-
filament nucleation, this suggests that phenotypic
profiling can not only simultaneouslymonitor the

activity of coupled signaling pathways (within
phenoclusters) but can also monitor the temporal
hierarchical relationships that exist among local
signaling networks.

The largest phenocluster was a group of TCs
that shared high DN-SIF, RacV12, and RacF28L
NNZs (cluster 18) and that corresponded to large
flat cells, typically with extensive lamellipodia
(Fig. 2 and fig. S18). This phenotype is consistent
with repeated observations of cells overexpress-
ing activated Rac mutant proteins or activated
RacGEFs such as SIF or Tiam-1 (7, 21). QMSs
for cenG1A, cenB1A, CG16728, and CG13692
RNAi were members of this phenocluster, rep-
resenting an enrichment in ArfGAPs (four of six
genes). Mammalian ArfGAPs such as GIT1 and

Fig. 1. Phenotypic pro-
filing workflow. (A) Cul-
tured Drosophila BG-2
cells were transfected with
plasmids encoding GFP
and either cotransfected
with plasmids encoding
red fluorescent protein–
tagged proteins or incu-
bated in the presence of
dsRNA for 4 days. Images
of GFP-labeled cells were
acquired by standard fluo-
rescence microscopy, and
individual cell imageswith
clear and complete bound-
aries were selected with
custom-developed software
(SOM). (B) Graphical rep-
resentations of some of
the features computed
from each individual cell
image (SOM). (C) 145
different features relevant
to cell morphology and
GFP signal intensity were
derived from individual
cells and expressed as Z
scores relative to their
values over a subset of
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GIT2 promote the disassembly of integrin-
based focal adhesions by binding the tyrosine-
phosphorylated form of Paxillin, which in turn
results in ArfGTPase activation and a concomi-
tant down-regulation of Rac activity and adhesion
turnover (22–24). In addition to ArfGAPs, this
phenocluster also contained QMSs for dsRNAs
targeting paxillin (fig. S18) and a-actinin, and
was defined by high levels of Rac activity (Fig.
2). Based on this and sequence analysis, we
suggest that CG16728 is theDrosophila ortholog
of mammalian GITArfGAPs. Proteomic analysis
has recently revealed that GIT1 is part of a
supramolecular complex that, in addition to
Paxillin, includes b2 centaurin and gelsolin and

directly binds moesin (25). Drosophila cenB1A
(the Drosophila ortholog of b2 centaurin),
Gelsolin, andMoesin dsRNAwere also members
of same phenocluster as CG16728 and paxillin,
further demonstrating that our methodology is
capable of identifying both functionally and
physically coupled signaling components. Taken
together, this suggests that the large, flat, and
spread morphology of cells in this phenocluster
was partially due to inhibiting the disassembly of
adhesion and that QMSs can be used to
functionally annotate genes.

We have demonstrated that quantitative mor-
phological profiling of single cells combined
with RNAi-based genetic screening technology

results in the identification of local signaling
networks with spatially, temporally, and func-
tionally defined characteristics that act in a
hierarchical manner to regulate cell shape and
migration. Thesemethods can be used not only in
the context of genetic screens but also in large-
scale screens of small-molecule libraries or
screens involving the overexpression of cDNAs.
Because our approach is a fast and cost-effective
way to query the activity of multiple signaling
proteins and pathways, quantitative morpholog-
ical profiling may also be useful as a diagnostic
tool in the analysis of clinical samples. Further-
more, akin to gene-expression data, we can now
use morphological phenotypic data for computa-
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Fig. 2. Identification of local networks that regulate distinct aspects ofmorphology.
Hierarchical clustering of the genes in the data set (the y axis) by how cells scored on
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TCs within these clusters is indicated in parentheses. Examples of individual cells and
their positions in the clustergramare shownon the left-hand side of the clustergram.
Based on their gene membership, a number of clusters were determined to have
specialized roles in cell morphology. A complete listing of clusters is provided in
table S8. Scale bars, 10 mm.
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tional approaches that aim to model the dynamic
nature of signaling networks, while the RNAi
component pushes us closer to causal mechanis-
tic linkages.
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Restriction of an Extinct Retrovirus by
the Human TRIM5a Antiviral Protein
Shari M. Kaiser,1,2 Harmit S. Malik,3 Michael Emerman2,3*

Primate genomes contain a large number of endogenous retroviruses and encode evolutionarily
dynamic proteins that provide intrinsic immunity to retroviral infections. We report here the
resurrection of the core protein of a 4-million-year-old endogenous virus from the chimpanzee genome
and show that the human variant of the intrinsic immune protein TRIM5a can actively prevent infection
by this virus. However, we suggest that selective changes that have occurred in the human lineage
during the acquisition of resistance to this virus, and perhaps similar viruses, may have left our species
more susceptible to infection by human immunodeficiency virus type 1 (HIV-1).

Alarge portion of primate genomes is
composed of endogenous retroviruses
that can be thought of as an archaeolog-

ical record of past infections. Both chimpanzee
and gorilla genomes harbor more than 100 copies
of Pan troglodytes endogenous retrovirus
(PtERV1), whereas it is absent from the human
genome (1). Comparison of individual PtERV1
proviruses in gorilla and chimpanzee genomes
suggest that this virus was active 3 to 4 million
years ago, after the separation of chimpanzee and
human lineages (1). This raises an evolutionary
conundrum as to why sister species, but not
humans, acquired germline copies of this retro-
virus even though all three species cohabited
when PtERV1was an active exogenous virus (1).
One mechanism of active restriction from
retroviral infections is conferred by the TRIM5a
protein, which binds directly to the incoming
retroviral capsid (CA) core and targets its
premature disassembly or destruction (2, 3). Each
primate species encodes a TRIM5a with a
different antiviral specificity (4). For example,
TRIM5a encoded by rhesus macaques renders

them resistant to infection by HIV-1, but human
TRIM5a affords no such protection (5). Indeed,
the antiviral specificity of TRIM5a has rapidly
evolved by dramatic episodes of positive selec-
tion during the past 30 million years of primate
evolution (6). The branch leading to the human
lineage shows one of the strongest signatures of
positive selection (6), which suggests that at least
one major pathogenic retroviral assailant has
challenged the human lineage in the past 4 to 5
million years. Taken together, these findings
suggest that TRIM5a evolution was shaped by
a species-specific history of ancestral retroviral
challenges. Although human TRIM5a has rela-
tively poor activity against retroviruses compared
with the gene from other primates, it potently
blocks a g-retrovirus N-MLV, which is related to
PtERV1 (7, 8).We therefore tested the hypothesis
that TRIM5a may have protected early humans
from invasion by PtERV1.

All copies of PtERV1 in the chimpanzee
genome have been inactivated by accumulated
detrimental mutations (1). However, the numer-
ous proviral copies of PtERV1 present in the
chimpanzee genome allow us to reconstruct the
ancestral sequence of the gag gene of this an-
cient, extinct retrovirus in silico (see supporting
online material). Analysis of the reconstructed
PtERV1 ancestral sequence reveals about 50%
identity with murine leukemia virus (MLV), and
several characteristic conserved elements are in-

tact (Fig. 1A). Phylogenetic analysis of chim-
panzee and gorilla PtERV sequences shows that
a single-source virus likely infected both chimpan-
zees and gorillas because viral sequences from
both species form a monophyletic group (Fig. 1B).

We next used site-directed mutagenesis to
reconstruct the ancestral p12 and CA coding
regions (ignoring synonymous changes) starting
from one chimpanzee PtERV1 provirus cloned
from the genome. We focused on CA because it
is the functional target of TRIM5a and included
p12 because of functional interactions that exist
between p12 and CA in other g-retroviruses (9).
Because TRIM5a interacts with the retroviral
CA only in the multimeric structure characteristic
of mature retroviral particles (10), we generated
the PtERV1 capsid core in the context of an
infectious virus capable of only a single round of
infection. This was achieved by constructing a
chimeric virus between PtERV1 and MLV that
encodes a gag/pol gene expressing the recon-
structed p12 and CA proteins of PtERV1with the
remainder of the viral structural proteins and
enzymes of MLV (Fig. 1C). Our MLV/PtERV1
chimeric virus was indeed infectious (Fig. 1D),
which demonstrates that regions of a 3- to 4-
million-year-old primate endogenous retrovirus
can be successfully resurrected.

We tested human TRIM5a restriction of
PtERV1 by infecting cells that express an
exogenous copy of human TRIM5a. A much
younger human endogenous retrovirus, HERV-K,
was also recently resurrected (11, 12) but was not
restricted by human TRIM5a (12). In contrast,
expression of human TRIM5a in a heterologous
cell type resulted in a dramatic reduction of
infectivity of the MLV/PtERV1 chimera by a
factor of more than 100 compared with cells that
do not express TRIM5a (Fig. 2A). These data
indicate that humans possess an intrinsic immu-
nity gene capable of effectively neutralizing an
extinct retrovirus that never successfully fixed
into the human genome.

Specificity of TRIM5a for a particular retro-
viral capsid is largely determined by amino acids
within the C-terminal B30.2 domain. Within this

1Molecular and Cellular Biology Program, University of
Washington, Seattle, WA 98195, USA. 2Division of Human
Biology, Fred Hutchinson Cancer Research Center, Seattle, WA
98109, USA. 3Division of Basic Sciences, Fred Hutchinson
Cancer Research Center, Seattle, WA 98109, USA.

*To whom correspondence should be addressed. E-mail:
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