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The complete genome sequence for numerous microbes is currently
available1. The genome annotation, along with biochemical and
strain-specific information, provides the information needed to
reconstruct complete metabolic networks of these microbes2–6. The
reconstructed metabolic networks can be used to analyze, interpret,
and predict the metabolic flux distribution of the reconstructed
metabolic network7–11.

The interpretation and prediction of metabolic flux distributions
requires mathematical modeling and computer simulation, and
there exists a long history of quantitative metabolic modeling12.
Currently, several well-developed mathematical approaches exist for
the analysis of cellular metabolism and its regulation13–21. Most of
these methods require detailed kinetic and concentration informa-
tion about enzymes and various cofactors. Even though information
about cellular components is growing rapidly, the application of
many mathematical modeling methods is hampered by a lack of the
required kinetic and enzyme concentration data. The human red
blood cell remains as a notable exception22–24.

To deal with the lack of kinetic information, an alternative
approach has been used to study feasible and optimal metabolic flux
distributions: flux balance analysis (FBA)25–30. FBA can be used to
analyze the capabilities of a reconstructed metabolic network solely
on the basis of the systemic mass-balance and reaction capacity con-
straints31 (Fig. 1). As a result of the incomplete set of constraints on
the metabolic network (that is, kinetic constant constraints and gene
expression constraints are not considered), FBA does not yield a
unique solution for the flux distribution. Rather, FBA provides a
solution space that contains all the possible steady-state flux distrib-
utions that satisfy the applied constraints. Subject to the imposed

constraints, optimal metabolic flux distributions can be determined
from the set of all allowable flux distributions using linear program-
ming (LP)30,32. To identify an “optimal” solution, it is necessary to
state an objective function. For studies involving microbial cells,
maximal cellular growth has been defined as the objective function
(see Experimental Protocol and refs 8, 26, 27, 33). Although such
optimal solutions can be calculated, we still do not know if these cal-
culated flux distributions represent actual cell behavior. If the pre-
dicted and actual metabolic fluxes agree, the data would support the
hypothesis that microbial cells use their metabolic networks to
achieve their objective: maximal cellular growth rate. Here we
address this hypothesis using E. coli as a model organism.

Results
Previously, we have reconstructed the E. coli metabolic network for
qualitative and quantitative in silico simulations8. We have also
developed an approach (phenotype phase plane (PhPP) analysis) to
map the optimal utilization of a reconstructed metabolic network as
a function of two nutrient uptake rates (see Experimental Protocol
and Supplementary Appendix 1 in the Web Extras page of Nature
Biotechnology Online)31. In the present study, we used the in silico
E. coli metabolic reconstruction and PhPP analysis to design experi-
ments that address the stated hypotheses about optimal cellular
growth rates.

Phenotype phase plane analysis. The metabolic network can be
examined using FBA. All the metabolic flux vectors (or metabolic
phenotypes) attainable by a reconstructed metabolic network are
mathematically confined to a region known as the flux cone, and the
optimal solution to the linear programming problem will then lie on
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an edge or vertex of the flux cone34, 35. Linear programming was used
to search the flux cone for a solution that maximizes an objective
(here the objective was defined as the growth flux). However, the
optimal flux distribution is only meaningful when interpreted in
terms of the flux constraints (α and β, see Experimental Protocol)
on the transport fluxes. Therefore, phenotype phase planes7,31,36 have
been developed to define the range of optimal flux vectors, and how
the optimal flux vector is dependent on the transport fluxes (or the 
α and β values described in the Experimental Protocol). The
methodology for defining PhPPs has been described31. The con-
struction of PhPPs is briefly described in the Experimental Protocol

and in Supplementary Appendix 1 in the Web Extras page of Nature
Biotechnology Online.

Acetate. Optimal growth performance on acetate was investigat-
ed in silico, and the predictions generated were compared to experi-
mental data. The in silico study started with a PhPP analysis, with the
acetate and oxygen uptake rates defined as the axes of the two-
dimensional projection of the flux cone representing the capabilities
of E. coli metabolism (Fig. 2A). The flux cone is the region of all
admissible steady-state metabolic flux distributions (for a complete
description of the flux cone see ref. 35). Furthermore, a three-
dimensional projection of the flux cone with the growth rate defined
as the third dimension was utilized (Fig. 2B). The in silico analysis of
the acetate-oxygen PhPP has been described 31. Briefly, the acetate-
oxygen PhPP consists of two phases (Fig. 2A) separated by a line that
defines the optimal (with respect to cellular growth) relation
between the acetate and oxygen uptake rate, and this line is referred
to as the line of optimality (LO).

The PhPP was used to analyze and interpret the operation of the
metabolic network. For example, under oxygen limitations the char-
acteristics of the metabolic network may be defined by region 2 of the
PhPP (Fig. 2A, B), where the acetate uptake rate exceeds the optimal
relation to the oxygen uptake rate. From Figure 2B, it can be seen that
if the metabolic network were operating within region 2, the optimal
capability to support growth would be increased by reducing the
acetate uptake rate to a point on the LO. A similar interpretation can
be made for points within region 1, with oxygen and acetate switch-
ing roles. Hence, metabolic flux vectors defining a point in region 1 or
region 2 would indicate inefficient utilization of the available
resources. Thus, the in silico PhPP analysis led to the conclusion that
if the regulation of the E. coli metabolic network has evolved to oper-
ate optimally to support growth with acetate as the sole carbon
source, the relation between the acetate and oxygen uptake rate and
the growth rate should be defined by the LO (Fig. 2A, B).

The relation between the acetate and oxygen uptake rates and the
growth rate was experimentally examined by cultivating E. coli
MG1655 on acetate minimal medium. The acetate uptake rate was
experimentally controlled by changing the acetate concentration in
the minimal medium. The uptake rates of acetate and oxygen and
the growth rate were measured, and the experimental points were
plotted on the PhPP (Figs 2 and 3). The calculated optimal relation
between the acetate and oxygen uptake rate was then compared to
the experimental data (Fig. 2A). Comparison of the experimental
data to the in silico predictions indicated a 14% difference between
the slope (0.91) of the linear regression line for the experimental
data and the slope (1.04) of the in silico-defined LO for aerobic
growth on acetate minimal medium.

The measured and calculated growth rates were plotted as the
third dimension above the acetate–oxygen PhPP (Fig. 2B). The
color-coded surface represents the three-dimensional projection of
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Figure 1. From genome sequence to metabolic characteristics. The
metabolic network can be reconstructed from the annotated
genome sequence2,5,51. The global properties of the metabolic
reconstruction can be studied to determine the feasible steady-state
metabolic flux distributions, and this process can be performed with
a whole-cell pathway analysis34,35. However, this process is
computationally intense; thus we can map feasible steady-state
metabolic flux distributions using an alternative approach known as
phenotype phase plane (PhPP) analysis7,31,36. PhPP analysis consists
of calculating the optimal solution using linear programming as a
function of two fluxes in the metabolic network (by setting the α and
β value in equation 1). This process constructs the surface revealed
in the figure. Finally, linear programming can be applied to calculate
the value of the objective function for specific values of the uptake
fluxes; additionally, the optimal value of all other fluxes is
calculated26,29,30. The results from this process can be compared to
experimental data to evaluate the suitability of this modeling
framework. Furthermore, this modeling approach can be used to
guide the metabolic engineering of industrial microorganisms.
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the flux cone. In other words, the color-coded surface defines the
solution space, and all feasible steady-state metabolic flux distribu-
tions are confined within the surface. The LO on the two-
dimensional phase plane (Fig. 2A) is a projection of the edge on the
three-dimensional surface onto the x,y-plane (acetate uptake rate,
oxygen uptake rate). The experimental data were plotted in the
three-dimensional space (Fig. 2B). To quantitatively visualize the
proximity of the data points to the LO in three dimensions, the 
in silico predictions and the experimental data were projected onto
each plane formed by the basis vectors.

The projection of the three-dimensional LO and the experimen-
tal data points onto the (x,y) (x,z), and (y,z) planes is indicated in
Figures 2A, 3A, and 3B, respectively, where the quality of the linear
regression is indicated by the correlation coefficient, and the data are
compared to the in silico predictions. (Note: x-axis is acetate uptake
rate; y-axis is oxygen uptake rate; z-axis is growth rate.) The predict-
ed and the observed metabolic fluxes (substrate and oxygen uptake
rates and growth rate) for each point were directly compared and the
in silico predictions and had an overall average error of 5.8% (data
available as Supplementary Table 4 in the Web Extras page of Nature
Biotechnology Online). At this point, we should note that the infor-
mation used to reconstruct the metabolic network was obtained

independently from the present experiments8. The calculated PhPP
represents a priori interpretation and prediction of the data
obtained in the present study.

Succinate. The succinate–oxygen PhPP (Fig. 4) was more com-
plicated than the acetate–oxygen PhPP. The succinate–oxygen PhPP
(Fig. 4A) had four distinct regions of qualitatively distinct optimal
metabolic network utilization. Regions 1 and 4 of the succinate–
oxygen PhPP were analogous to regions 1 and 2 of the acetate–
oxygen PhPP. For example, it can be seen from Figure 4C that the
maximal growth flux for a flux vector in region 4 can be increased if
the succinate uptake is reduced to a point defined by the region 3, 4
demarcation. Furthermore, from the PhPP analysis, region 3 is
defined as a single substrate-limited region. The single substrate-
limited region indicates that the succinate uptake rate has little effect
on the maximal growth flux in region 3, whereas the oxygen uptake
rate has a positive effect on the growth rate.

Region 2 is defined as a dual substrate-limited region, because in
region 2 the metabolic network can support an increased growth
rate if the succinate or oxygen uptake rate is increased. The in silico
analysis shows that the cellular growth rate can be increased by 
operating the metabolic network off of the LO in region 2, by imple-
menting a partially aerobic metabolism and the secretion of a meta-

bolic by-product. The optimal metabolic by-product
was calculated to be acetate. The production of a
reduced metabolic by-product in region 2, however,
reduces the overall biomass yield. Therefore, it is possi-
ble to surmise from the PhPP analysis that, if the regula-
tion of the metabolic network were to evolve toward
optimal growth with succinate as the sole carbon source,
the metabolic network would operate with a flux vector
along the LO. However, the growth rate can be increased
by moving the flux vector into region 2; thus we expect
that the network should only operate in region 2 when
oxygen is limited and succinate is plentiful if the stated
hypothesis is true.

We carried out E. coli growth experiments on succi-
nate minimal M9 media to critically test the hypothesis
given in the above in silico analysis. Multiple batch cul-
tures were grown at various succinate concentrations
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Figure 2. In silico predictions of growth and metabolic functions and comparisons to experimental data. (A) The acetate uptake rate (AUR)
(mmol/g DW/h) versus oxygen uptake rate (OUR)(mmol/g DW/h) phenotype phase plane. Red line is the in silico-defined line of optimality (LO).
The slope of this line is indicated in the figure. The experimental data points are displayed on the figure. The error bars represent a single
standard deviation, and the error bars are displayed for both the AUR and the OUR measurements. A linear regression was performed (the
dashed line) on the data points to define the experimentally reconstructed LO. The R2 value for the curve fit is 0.92. Regions 1 and 2 represent
nonoptimal metabolic phenotypes. (B) The three-dimensional rendering of the phase surface. The x- and y-axis represent the same variables as
in (A). The third dimension represents the cellular growth rate. The z-axis values are color-coded with the optimal growth rate value
quantitatively indicated on the corresponding legend. The LO in three dimensions is indicated. The parametric equation of LO in three
dimensions is indicated in the text. The black lines define the surface of the metabolic capabilities in the three-dimensional projection of the flux
cone and represent constant values of the AUR or OUR. The quantitative effect on cellular growth potential of increasing the AUR (without
proportional increase in the OUR) can be visualized. The data points (in blue) are also plotted on the three-dimensional figure and error bars
have been omitted.

Figure 3. Line of optimality (LO) projected onto each pair of basis vectors. 
(A) Acetate uptake rate versus growth rate. (B) Oxygen uptake rate versus growth
rate. The in silico-defined LO is indicated in red with the corresponding regression
equation. The data points have also been projected on the respective basis vectors,
and a linear regression was performed in the two-dimensional plane to
experimentally define the LO
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and temperatures to span a range of succinate uptake rates. The aer-
ation and agitation were held constant to maintain a consistent
maximal oxygen diffusion rate in all the cultures. The succinate and
oxygen uptake rates and the growth rate were measured separately
for each independent growth experiment. The experimental data
were then directly compared to the in silico predictions (Fig. 4).

The experimental data points were consistent with the stated
hypothesis: the flux vector consistently identified points along the
LO for oxygen uptake rates below a critical value (∼ 18.8 mmol/g
DW/h). (Note: g DW is grams dry weight.) Furthermore, the cul-
tures that identified points along the LO produced little or no
acetate as a metabolic by-product (as predicted by the in silico
analysis; see Fig. 4B). As hypothesized, the experimental data indi-
cate horizontal movement of the flux vector within region 2 for the
experimental systems that are oxygen limited but have plentiful
succinate. The breakpoint in the experimental data was deter-
mined to correspond to a maximal oxygen uptake rate of 18.8 ± 0.5
mmol/g DW/h. Flux vectors within regions 3 or 4 were never
observed. Acetate production was measured for the cultures iden-
tified in region 2, and quantitatively compared to the in silico pre-
dictions in Figure 4B.

The optimal growth rate surface was constructed over the succi-
nate–oxygen PhPP, and the measured flux vectors fell near the edge
of the fluxcone that corresponded to the LO (Fig. 4C). The flux vec-
tors also identified a locus of points on the phase surface in region 2
with a constant oxygen uptake rate equal to the maximal oxygen
uptake limit of the system. To quantitatively test the predictive capa-
bility of the in silico analysis and the in silico derived-hypothesis, we
employed a piecewise linear model to describe our hypothesis and
the experimentally observed flux vectors. The piecewise linear

model is defined as follows: we identified the locus of points defined
by the flux vector for a range of succinate uptake rates and an oxygen
uptake limit. Below the oxygen uptake limit, the locus of points lies
along the LO, and above the oxygen uptake limit the locus of points
lies along the phase surface with a constant oxygen uptake rate (the
oxygen uptake limit). On the basis of the piecewise linear model, we
used the succinate uptake rate to predict the oxygen uptake rate and
the growth rate, and considered the other two permutations as well.
From this analysis an overall average error between the in silico pre-
dictions and the experimental data was 10.7% (data available as
Supplementary Table 5 in the Web Extras page of Nature
Biotechnology Online).

Discussion
We have studied the metabolic behavior and capabilities of E. coli
MG1655 in silico and formulated experiments that directly test the
optimal growth of E. coli. For the considered growth conditions,
quantitative predictions of the substrate and oxygen uptake rates, by-
product secretion rates, and cellular growth rates were obtained. Two
metabolic fluxes corresponding to the substrate uptake rate
(acetate/succinate and oxygen uptake) and the growth flux were cho-
sen to define the three-dimensional phenotype phase surface. Under
the examined growth conditions, the hypothesis that E. coli optimizes
its growth rate subject to systemic capacity and stoichiometric con-
straints was consistent with the experimental data. Thus, for the
growth conditions considered, it was possible to use an in silico meta-
bolic reconstruction to quantitatively interpret metabolic physiology.

The in silico approach utilized is a departure from traditional
approaches to the detailed modeling of physicochemical systems.
Traditional approaches call for the statement of fundamental princi-
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Figure 4. In silico predictions of growth and metabolic functions and
comparisons to experimental data. (A) The succinate uptake rate (SUR)
(mmol/g DW/h) versus oxygen uptake rate (OUR) (mmol/g DW/h)
phenotype phase plane. Red line is the in silico-defined line of optimality
(LO). The experimental data points are displayed on the figure. The error
bars are displayed for both the SUR and OUR measurements and
represent a single standard deviation. Cultivations for which acetate
was produced above a threshold of 0.3 mmol/g DW/h are indicated by
open circles; filled circles identify either no acetate production or
production below the threshold. The black dotted line represents the
linear regression of the data points with no acetate production. (B) The
measured acetate production vs. the in silico predictions for each point
illustrated in (A). The data points are rank-ordered by the SUR. 
(C) Three-dimensional phenotype phase surface analysis. The x- and 
y-axis represent the same variables as in (A). The third dimension
represents the cellular growth rate. The z-axis values are color-coded
with the corresponding legend in the figure. The demarcation lines
separating the colored regions represent constant OURs and AURs, and
the quantitative effect of moving away from the LO can be visualized.
The data points are plotted in this three-dimensional figure with the
exception of the error bars.
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ples (such as the diffusion equation and chemical potential differ-
ences), upon which a detailed mathematical model is based. In 
contrast, the approach we take here is to impose known systemic
constraints on the function of the entire metabolic network and to
study the feasible metabolic behavior within these systemic con-
straints. Using this approach, we are able to simulate whole-cell
metabolic flux in a steady state, but we are unable to determine the
metabolic concentrations or track the system dynamics. Despite the
limitations of the approach, our results indicate that the growth of E.
coli in acetate and succinate minimal media is consistent with the
optimal utilization of the metabolic network subject to the stoichio-
metric and capacity constraints. In the future as more detailed and
quantitative biochemical information becomes available, we will be
able to state additional unambiguous constraints on cellular metabo-
lism to further restrict the allowable behavior of the integrated func-
tion of biological networks. However, in spite of the impressive
advances in genome-scale experimental approaches and the rapid
development of bioinformatics, it is still uncertain whether in the
foreseeable future we will have all of the necessary information to
construct detailed kinetic models based on fundamental principles.

Although this study represents an important step that experi-
mentally verifies in silico numerical predictions generated on the
basis of genomic, biochemical, and strain-specific data, we expect
that further experimental work will be needed to examine the gener-
ality of the optimal growth behavior of E. coli and the computation-
al approach used. Here we have measured the exchange fluxes, and
further experiments are needed to determine the consistency
between the optimal and actual intracellular fluxes. “Genome-scale”
measurements of intracellular metabolic fluxes are currently diffi-
cult to obtain; nonetheless, to fully address the predictive capability
of the in silico analysis, intracellular measurements will ultimately be
required37,38. Despite the existing lack of intracellular flux measure-
ments, other measurements indicative of the intracellular fluxes will
provide essential clues for deducing the predictive capability of in
silico analysis and in addition will reveal a greater understanding of
how the metabolic network operates. Advances in genomic tech-
nologies, such as DNA microarrays39,40, GeneChips41, and pro-
teomics42–44 will undoubtedly be useful, making it possible to assess
predicted shifts in pathway utilization45.

The work described here should be considered a step toward the
integrative analysis of bioinformatic databases to predict and under-
stand cellular function on the basis of the underlying genetic con-
tent. More extensive studies are required to assess the generality of
the results and conclusions presented.

Experimental protocol
Strains and media. Escherichia coli MG1655 (American Type Culture
Collection No. 47076) was used for all of the experiments. The E. coli
MG1655 annotated genome sequence and the biochemical literature46 were
used to construct the in silico E. coli strain as described8. The experiments
were carried out in M9 minimal media47 with the addition of acetate or succi-
nate as the carbon source. Cellular growth rate was varied by changing the
conditions, both the carbon source concentration (0.05–4 g/L) and the tem-
perature (27.5–37°C).

Batch cultivation. Batch reactors were set up at two different volume
scales. 1 L cultures were carried out in 1.5 L Erlenmeyer flasks with aeration,
and the large-volume batch cultures were used to continuously monitor the
oxygen uptake rate (OUR) online with an off gas analyzer. To carry out 200
ml cultures, 500 ml Erlenmeyer flasks were used, and for the 200 ml cultures
the OUR was monitored online polarographically and by measuring the
mass transfer coefficient for oxygen (kla). The temperature was controlled
using a circulating waterbath (Haake, Berlin, Germany). All measurements
and data analysis were restricted to the exponential phase of growth. The bio-
mass (see Supplementary Table 3 in the Web Extras page of Nature
Biotechnology Online) and the concentration of the substrate (acetate or suc-
cinate) in the medium were monitored throughout the experiment.

Analytical procedures. Cellular growth was monitored by measuring the

optical density (OD) at 600 nm and 420 nm and by cell counts (Coulter
Electronics Inc., Hialeah, FL). OD to cellular dry weight correlations were
determined by two different measurements: (1) spun-down cells were dried
at 75°C to a constant weight, and (2) 15–25 ml (taken throughout the cul-
ture) samples were filtered and dried to a constant weight. The concentration
of metabolites in the culture medium was determined by high-performance
liquid chromatography (HPLC; Rainin Instruments Co. Inc., Woburn, MA).
An Aminex HPX-87H ion exchange carbohydrate-organic acid column (Bio-
Rad Laboratories, Hercules, CA) (at 66oC) was used with degassed 5 mM
H2SO4 as the mobile phase and UV detection. The dissolved oxygen in the
culture was monitored using a polarographic dissolved oxygen probe (Cole-
Parmer Instruments Co., Vernon Hills, IL). Oxygen consumption was mea-
sured by three different methodologies: (1) passing the effluent gas through a
1440C Servomex oxygen analyzer (Servomex Co., Inc. Norwood, MA); 
(2) calculating from the dissolved oxygen reading and kla measurements; and
(3) in a respirometer chamber in a separate 50 ml flask. All three methods
used for measuring the OUR gave similar and reproducible results.

Flux balance analysis. The metabolic capabilities of the defined E. coli
MG1655 metabolic genotype were assessed computationally using FBA as
described in the literature26,29,30 (an online FBA primer is available as
Supplementary Appendix 1 in the Web Extras page of Nature Biotechnology
Online; also see http://gcrg.ucsd.edu). FBA can be used to analyze metabolic
systems by defining a series of constraints on the metabolic network. The sto-
ichiometric constraints and the capacity constraints were considered herein.
The FBA equation that defines the stoichiometric (or mass balance con-
straints) is S•v = 0, where S is the stoichiometric matrix and the vector v
defines the metabolic fluxes (includes internal and external fluxes). Capacity
constraints were placed on the value of each flux in the metabolic network.
The capacity constraints were utilized to set the uptake rate for the transport
reactions and define the reversibility of each metabolic reaction. Capacity
constraints were defined for transport reactions. The phenotype phase
planes were constructed by varying the capacity constraints on the carbon
source and oxygen uptake rate. Transport fluxes for metabolites not available
in the media were always restricted to zero. Additionally, the transport of
inorganic phosphate, ammonia, carbon dioxide, sulfate, potassium, and
sodium were unconstrained, and metabolic by-products were always allowed
to leave the metabolic system. The capacity constraints were also used to
define the reaction reversibility; for example, α i for the internal fluxes was set
to zero for all irreversible fluxes, and all reversible fluxes were unbounded.

The determination of a particular metabolic flux distribution was formu-
lated as a linear programming problem, in which the solution that maxi-
mizes an objective function was identified. The linear programming problem
was formulated as shown below:

Minimize Z subject to: S•v = 0
α i ≤ vi ≤ βi

where

The vector c was used to select a linear combination of metabolic fluxes to
include in the objective function33. Herein, we have defined cellular growth
as the objective function; therefore, c was defined as the unit vector in the
direction of the growth flux, and the growth flux was defined in terms of the
biosynthetic requirements as follows:

where dm is the biomass composition of metabolite Xm (defined from the lit-
erature48), and the growth flux is modeled as a single reaction that converts
all the biosynthetic precursors into biomass.

Phenotype phase plane analysis. All the metabolic phenotypes (metabolic
flux distributions) attainable from a defined metabolic genotype are mathe-
matically confined to a flux cone (intersection of the null space49 and the 
linear inequalities defined above34,35), where each solution in this space corre-
sponds to a particular internal flux distribution or a particular phenotype30.
The flux cone can be explored in two dimensions by using a phase plane
analysis8,31. The uptake rates of two nutrients (such as the carbon substrate
and oxygen) form two axes on an (x,y)-plane, and the optimal flux map can

(2)

(1)
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be calculated for all points in this plane. There is a finite number of funda-
mentally different optimal metabolic flux maps present in such a plane. The
demarcations on the phase plane are identified by a shadow price (linear pro-
gramming dual-variable) analysis50. Three-dimensional “surfaces” are con-
structed by defining the cellular growth rate as the third dimension, and for
each point within the phase plane the optimal growth rate was calculated and
displayed in the third dimension. The three-dimensional surface quantita-
tively demonstrates the sensitivity of the objective function to the uptake
rate.

Note: Supplementary information can be found on the Nature
Biotechnology website in Web Extras (http://biotech.nature.com/
web_extras).
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