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In the post-genomic era, elucidation of gene function is a main
focus. Plant functional genomics1 couples the generation of trans-
genic and mutant plants to the multiparallel analysis of gene
products such as mRNA2 and proteins3. However, these methods
do not provide direct information about how a change in mRNA
or protein is coupled to a change in biological function. As a result
of a multiplicity of regulatory interactions at all levels in plant
cells, a change at one level in the complex network does not neces-
sarily lead to a particular change in function or phenotype.
Instead, single point mutations might often lead to complex
responses at the level of the whole organism. In applying the pro-
filing concept, it is crucial to perform unbiased (metabolite)
analyses in order to define precisely the biochemical function of
plant metabolism4. Such analyses complement existing functional
genomics methodologies while offering a direct link between a
gene sequence and the function of the metabolic network in
plants. Furthermore, metabolite profiling can elucidate links and
relationships that occur primarily through regulation at the meta-
bolic level. Finally, a broad metabolic analysis may address public
concerns about the safety and value of plant genetically modified
organisms.

To become established as a robust tool, metabolite profiling
must be fast, reliable, sensitive, and suitable for automation, as well
as covering a significant number of metabolites. A range of analyt-
ical technologies enhances the sensitivity and universality of mass
spectrometry by chromatographic separations. To date, however,
metabolic screening approaches using mass spectrometry are
rarely used in plant research5,6. For the most part, the use of multi-
target profiling has been limited to rapid clinical detection of
human diseases7. We judged gas chromatography coupled to elec-
tron-impact quadrupole mass spectrometry (GC/MS) to be the
most mature technology capable of fulfilling the required criteria.

The methodology described here allows the detection and quan-
tification of more than 300 compounds from a single plant leaf
extract.

Results and discussion
Plant leaf extracts yield 326 quantifiable compounds. Metabolite
extraction from Arabidopsis leaf tissue was done using methanol
and heat, thereby rapidly inhibiting enzymatic activity. We added 
internal standards in order to correct for minor variations occur-
ring during sample preparation and analysis. A single 
fractionation step into a lipophilic and a polar phase was followed
by solvent evaporation and derivatization for increasing 
metabolite stability and volatility as reported8. Briefly, the lipid
phase was transmethylated and trimethylsilylated for the analysis
of total fatty acids, fatty alcohols, sterols, and aliphatics, whereas
the polar phase was methoximated and trimethylsilylated for 
the analysis of hydroxy- and amino acids, sugars, sugar alcohols,
organic monophosphates, (poly)amines, and aromatic acids.
Metabolite sizes were in the range of ethylene glycol (62 AMU) 
to trisaccharides (504 AMU). Optimal reaction conditions were
established as a compromise between reaction completeness 
and the maintenance of labile compound integrity (data not
shown). We chose analytical parameters as a compromise 
between separation efficiency, column capacity, and column 
long-term stability. This GC/MS approach is extremely 
powerful for plant metabolite profiling (Fig. 1). Hundreds of 
different compounds were detected in parallel, some of which 
had severely overlapping peaks that are deconvoluted by 
selective ion traces (Fig. 1B). Compound identification 
was performed by comparison of mass spectra and re-
tention times with those obtained with commercially 
available reference compounds. A major advantage of mass spec-
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trometry is that unknown peaks can be determined as reliably as
known target analytes without prior knowledge of their exact chem-
ical structure. In Arabidopsis extracts, after rigorous comparison of
mass spectra with commercial libraries9, about half of the detected
peaks currently remain unidentified. High-throughput peak finding
was done by matching mass spectra within a 0.25 min wide time
window around the predicted retention times for each target com-
pound. Fluctuations in the relative retention times of sugars and
hydroxy acids were found to lie within 0.02 min of the predicted
time and, thus, occasional false positive identifications were correct-
ed by setting a postacquisition threshold for the deviation of the
retention time of 0.04 min (0.07 min threshold for amino com-
pounds). False positive identifications were automatically qualified
as not determined and excluded from further calculations or manu-
ally corrected, where necessary. In total, 326 compounds were found
in the Arabidopsis thaliana leaf extracts (101 polar and 63 lipophilic
identified compounds, plus 113 polar and 49 lipophilic compounds
of unknown chemical structure). A complete list of the mass spectra
of our current target compounds and sample preparation protocols
can be downloaded from our website10.

With respect to quantification, we followed two approaches.
Relative amounts of the various compounds were obtained by nor-
malizing the intensity of individual ion traces (that are indicative for
the respective compound even in the presence of co-eluting com-
pounds) to the response of internal reference compounds, and fur-
ther, to 1 mg of plant leaf fresh weight. For quantification a linear
relationship between metabolite amount and the analytical signal is
crucial. Internal calibration curves confirmed that this assumption
holds true over two to three orders of magnitude when 11 stable iso-
topic labeled compounds were added to 32 different Arabidopsis
thaliana leaf extracts (Fig. 2). Because of matrix effects, up to
twofold differences were found between external and internal cali-
bration, but no differences were found between mutant and wild-
type C24 plants. Calibration linearity was also confirmed for 
50 metabolites of unidentified chemical structure both by diluting
derivatized plant samples and by derivatizing different volumes of a
single plant extract (data not shown).

The stable isotope internal calibration curves were also used to
determine the absolute amounts of certain metabolites. Table 1 sum-
marizes the absolute mean values for these compounds as deter-
mined for leaf extracts of 18 individual Arabidopsis thaliana C24
wild-type plants. Graphs in Figure 2 and data contained in Table 1
confirm that the profiling method established here allows the deter-

mination of both relative and absolute quantities. However, it is
important to stress that for the vast majority of applications of the
profiling technology, the absolute value is unimportant, rather the
relative value is sufficient.

Another key factor for any analytical technique is reproducibility.
The reproducibility of the whole process was tested in order to deter-
mine the potential contribution of variability in the analytical
method to the observed variation between different biological sam-
ples. In order to estimate the influence of the sample preparation and
the analytical device on variability, two samples of Arabidopsis C24
wild type were combined directly following extraction and divided
into seven aliquots. Each aliquot was taken separately through the
sample preparation procedure and after GC/MS analysis of the polar
phase, relative standard deviations were determined for 149 polar
metabolites. The mean of these deviations was 8% ± 6%, and 110 of
these compounds showed even lower deviations (5% ± 2%). This is
at least as accurate as comparable functional genomic methods at the
protein level11 and clearly more accurate than differential analysis of
expression using cDNA microarrays12. Therefore, we conclude that
the variability introduced into the analytics by the sample prepara-
tion and the actual measurement is small and can be tolerated.

In order to get an insight into the biological variability, 18 plants
of Arabidopsis thaliana genotype C24 (wild type) were grown in the
phytotron side by side under identical conditions and harvested at
the same time. Absolute values were determined for 11 metabolites
based on isotope-labeled internal calibration curves. As evident
from Table 1, the variability due to the biological variability is in
clear excess of the variability due to the overall analytical precision.
This finding indicates the metabolic flexibility of plants. For the
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Figure 1. Metabolite profiling by GC/MS. Base peak intensity GC/MS
chromatogram of the polar fraction of a leaf extract from the
Arabidopsis dgd1 mutant (A). Target metabolites are identified by
exact retention times and their corresponding mass spectra (B) as
shown for the co-eluting peaks of malate, γ-aminobutyric acid
(GABA), and an unidentified compound. m/z, Ratio of mass to charge. 

Table 1. Biological variation and analytical precision in
Arabidopsis thaliana C24 WT plants

Chemical Average Biological           Analytical
contents variation         reproducibility

(nmol/mg FW)a, (% s.d.), (% s.d.), 
n = 18 n = 18 n = 7

Ethylene glycol 1.2 ± 0.3 26 6
Alanine 144 ± 56 38 12
Valine 38 ± 6 17 5
Ethanolamine 63 ± 14 23 6
Glycerol 24 ± 12 49 2
Leucine 25 ± 7 29 8
Benzoic acid 0.8 ± 0.3 40 10
Aspartic acid 79 ± 34 43 5
Glutamic acid 199 ± 75 38 3
Glucose 119 ± 67 56 5
Sucrose 598 ± 180 30 2

aFW, fresh weight.

Figure 2. Metabolite calibrations. Calibration curves for determination
of dynamic ranges and absolute concentrations using stable isotope-
labeled metabolites. Open symbols, external calibration; filled
symbols, internal calibration. (A) 13C6-Glucose. (B) d4-ethanolamine.
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remaining 140 compounds only relative quantifications were per-
formed. Again the biological variability was found to be on average
∼ 40% s.d. These findings therefore show that the biological variabil-
ity seen between genetically identical plants grown under identical
conditions is the largest source for the variability observed.

For application in the framework of genomic approaches, one
single individual can process 60 samples per working day. Using our
protocols, three GC/MS machines are needed for the processing of
the 60 samples. It is obvious that this figure can be easily amplified
by increasing the number of machines and persons involved.

Mutants and parental ecotypes display large metabolic differences.
The power of metabolite profiling was tested for its ability to distin-
guish between ecotypes using various Arabidopsis thaliana genotypes,
which are supposedly genetically characterized by the presence of sev-
eral hundred allelic differences, and two mutants with these ecotype
backgrounds. One of the mutants should display a severe visible phe-
notype, whereas the other mutant should grow and develop essentially
indistinguishable from the parental wild-type background. The two
ecotypes chosen by us were Col-2 and C24. On the genetic background
of Col-2, the dgd1 mutant was chosen, which is characterized by a 90%
reduction in the galactolipid digalactosyldiacylglycerol (DGD)13. As a
consequence of the reduced levels of DGD, the mutant is impaired in
photosynthesis and is hypersensitive to light stress14, and thus served as
an example of a rather severe phenotype. The gene affected was recent-
ly cloned and shown to encode a galactosyl transferase (DGD syn-
thase). Because the mutant was backcrossed four times with the
parental ecotype, Col-2, most of the original mutant DNA was
replaced by Col-2 DNA. By transformation of this line with wild-type
genomic DNA fragments carrying the DGD1 gene or with the DGD1
cDNA, we could demonstrate15 that not only the DGD lipid phenotype
but also the growth defect were complemented. Therefore, all effects
other than deficiency in DGD biosynthesis are believed to be sec-
ondary effects. The second mutant used in this study, sdd1-1, carries a
point mutation in a regulatory gene involved in the control of stomatal
development16. Like dgd1, sdd1-1 was also backcrossed four times with

its parental ecotype, C24. The
lack of SDD1 gene function
causes a two- to fourfold increase
in stomatal density; however, the
mutant displays no other visible
phenotype, and therefore was
chosen to represent a mild
mutant phenotype. Thus, sdd1-1
was selected as a morphological
mutant for analysis to gain infor-
mation about the potential
metabolic changes caused by the
increased stomatal density that
result in enhanced gas exchange
properties (increased CO2

uptake and H2O release) of the
leaves.

Mutant plants were grown
in parallel with their corre-
sponding wild-type plants
until the flowering stage
(defined by the presence of an
inflorescence stem about 7 cm
in height) in a controlled envi-
ronment under standard 
conditions. All plants were ran-
domly distributed within the
growth chamber to eliminate a
potential contribution of posi-
tion effects. For analysis of

each genotype samples from fully expanded rosette leaves were
taken from 28–45 individual plants. Individual processing of these
samples resulted in 28–45 individual profiles per genotype. After
GC/MS analysis, data normalization, and data validation,
Student’s t-tests were carried out for statistical analysis17. To
achieve high result reliability, we used t-test probability limits of 
p < 0.01 in our evaluations.
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Figure 3. Significant metabolite differences in plant genotypes. Alterations in mean metabolite levels (t-test, 
p < 0.01) of (A) the dgd1 mutant and (B) the sdd1-1 mutant compared to their respective parental wild-type
backgrounds (Col-2 and C24). For the dgd1 mutant, 153 significant alterations in metabolites were found. For
visual clarity, only 67 of the metabolites are presented that were selected either by their physiological importance
or by their metabolite alteration exceeding a factor of 3. For sdd1-1, all 41 of the significant alterations are shown.

Figure 4. Metabolic phenotype clustering. Clusters found after
principal component analysis (PCA) of log-scaled polar metabolite
data of 151 samples originating from four plant genotypes. Single-
loci mutants show metabolic phenotypes distinct from wild-type
plants (WT). Basic vectors in PCA span an n-dimensional space to
give best sample separation. Each point represents a linear
combination of all the metabolites from an individual sample. Vectors
1, 2, and 4 were chosen for best visualization of genotype separation
and include 62% of the total information content derived from
metabolite variances.
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The loss of activity of a single enzyme in the dgd1 mutant
resulted in a dramatic alteration in the metabolite composition: in
comparison to the corresponding Col-2 wild-type plants, the levels
of 153 out of 326 quantified metabolites were significantly differ-
ent (Fig. 3A) in the dgd1 mutant plants. The metabolic differences
between Col-2 wild type and the dgd1 mutant are quite complex
and at present can only be partially explained. For example, some
amino acids and citrate cycle intermediates are increased in the
dgd1 mutant, possibly indicating an increase in citrate cycle activi-
ty. Furthermore, indole-3-acetonitrile and several unidentified
indole derivatives were increased in the mutant. Indole-3-acetoni-
trile is the precursor of the plant hormone indole-3-acetic acid
(IAA), which itself did not reach detectable amounts by our profil-
ing approach. The differences in IAA metabolism may reflect a
hormone-controlled mechanism induced by the growth retarda-
tion of the dgd1 mutant. Concomitant with the reduction in DGD
lipid, the amount of the fatty acid 16:3 is decreased in the mutant,
which can be explained by a change in the relative amounts of dif-
ferent forms of the substrate of the DGD synthase reaction, mono-
galactosyl diacylglycerol. The apparent reduction of galactose con-
tent in the dgd1 mutant may reflect the downregulation of overall
galactose biosynthesis as a response to the block in galactolipid
biosynthesis. Furthermore, the concomitant reductions of inositol,
galactinol, raffinose, and melibiose point toward a reduced flux
through the biosynthesis of the carbohydrates of the galactinol
family. It is obvious from its metabolic profile that a wide range of
enzymes and pathways have been affected by the dgd1 mutation.
This analysis demonstrates the power of the metabolite profiling
method to identify and quantify previously overlooked alterations,
allowing a more comprehensive interpretation of the consequences
of genetic modifications.

The second mutant that we tested, sdd1-1, is deficient in a 
subtilisin-like serine protease likely to be involved in the processing
of a proteinaceous component of a signal transduction pathway con-
trolling stomatal development. Apart from exhibiting increased
stomatal density and stomatal cluster development, the sdd1-1
mutant does not display any other obvious visible morphological
alterations. However, it does have a slight retardation in seedling

establishment after sowing, which results in a three- to four-day
delay in flowering under the conditions used. In contrast to the dras-
tic alterations observed in the dgd1 mutant, there were fewer varia-
tions in metabolite levels in the sdd1-1 mutant when compared to
the corresponding wild type. Significant differences were found in
41 metabolites (Fig. 3B), but only a few compounds were altered
more than twofold. None of these changes are obviously linked to
the elevated stomatal density in sdd1-1. Metabolite levels were
expected to be increased for osmotically active components (as com-
pensatory reactions to elevated transpiration) or carbohydrates
(because of a raised net CO2 uptake mediated by the enhanced stom-
atal density). Metabolite profiling, however, revealed neither a net
increase in osmolytes nor in primary products of photosynthesis.
The most dramatic difference between the sdd1-1 mutant and the
wild type occurred for two hydrophilic substances of unknown iden-
tity. The 13-fold reduction in substance U#29 and the concomitant
13-fold increase in U#73 may be indicative of a close metabolic rela-
tionship. The effects of the sdd1-1 mutation on lipophilic 
metabolites are as difficult to understand as the alteration in polar
metabolism. There is a significant change in leaf fatty acid composi-
tion: One of the most abundant fatty acids in Arabidopsis, 16:3, is
decreased by more than fivefold in mutant plants, whereas 16:1 and
16:0 are increased and most of the other fatty acids remained unaf-
fected. It has been shown recently by means of gene silencing that
decreases in 16:3 levels lead to an improved thermo tolerance in
transgenic plants18 by modification of membrane function.
Therefore, it is an interesting finding that the single-loci mutations
tested here, sdd1-1 and dgd1, also lead to a decrease of 16:3.

In both mutants alterations in many metabolites were observed.
As stated above, half of the scored metabolites are of unknown struc-
ture. Because metabolite profiling reveals in cases such as sdd1-1 that
the most dramatic changes occur in unknown metabolites, further
analyses, including structure elucidation, can be focused on a small
number of compounds. In addition, new plant metabolites from
unknown pathways can be detected by a non-target profiling
approach. Triethanolamine is not commonly known as a plant
endogenous metabolite in standard biochemical pathways19,20 but is
of widespread use as an organic solvent. The fact that significantly
decreased levels of triethanolamine were observed in dgd1 plants
compared to Col-2 wild-type plants strongly argues against it being a
contaminant, and rather suggests that it is produced by the plant
biosynthetic machinery.

Principal component analysis reveals four clusters. Data interpre-
tation of mean metabolite levels is difficult not only because 
biochemical pathways are linked and highly regulated but also because
information gets lost in the process of averaging. Each individual plant
represents a unique biological system; thus, it is to be expected that
metabolite correlations to gene functions will be more clearly 
distinguished by multivariate data mining techniques21. Data mining
tools reduce data complexity by focusing on the information content of
a given data set. Two methods were applied: hierarchical component
analysis (HCA) and principal component analysis (PCA)22. Both meth-
ods use all metabolite data from a plant sample to compute an individ-
ual metabolic profile and simultaneously compare this profile with all
other plant metabolic profiles. As a first example, calculation of pattern
recognition was based on the metabolic profiles of the polar com-
pounds. In HCA, this pattern recognition is performed by calculation
of Euclidean distances resulting in groups of samples (clusters) that
show multivariate similarity. By examining the corresponding HCA
dendrogram we found two main clusters for each of the Arabidopsis
ecotypes. Each of these clusters was further divided into two subclus-
ters corresponding to wild-type and mutant plants (data not shown).
This genotype clustering was confirmed by PCA pattern recognition,
which in some ways is an even more useful approach for the identifica-
tion of gene function from metabolic profiles. By an n-dimensional
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Figure 5. Metabolite impacts on clustering results. The contribution of
individual polar metabolites to the PCA vector calculation is
computed by linear combination. The closer to zero, the less influence
of a metabolite on linear combination is found. Vector 1 predominantly
separates plants from C24 and Col-2 genetic backgrounds, whereas
vector 2 separates Col-2 ecotype plants from the corresponding dgd1
mutants. Vector 4 contributed most to the separation of C24 wild-type
plants from the sdd1-1 mutants, although for reasons of clarity this
vector is not shown in this figure. Examples of metabolite identity are
numbered: 1 = isomaltose; 2 = U#106; 3 = proline; 4 = serine; 5 =
threonine; 6 = pyroglutamic acid; 7 = glutamate; 8 = β-alanine; 9 =
phenylalanine; 10 = U#107 (indole derivative); 11 = ascorbate; 12 = γ-
hydroxybutyric acid lactone;13 = U#72.
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vector approach, PCA finds those basic vectors (eigenvectors) that give
best overall sample separation. On the basis of total variances, vectors
are determined by linear combination of all metabolite data. The
resulting vectors are ordered by decreasing amount of total variance
resulting in a minimum of loss of information content when data are
visualized. Each sample can then be represented in a two- or three-
dimensional space spanned by these vectors. When all samples of a
genotype accumulate in the same cluster, this cluster can be regarded as
a specific “metabolic phenotype.” After application of PCA algorithms
to the Col-2 / dgd1 / C24 / sdd1-1 experimental data set of polar com-
pounds, four different clusters were found that are identical with the
four plant genotypes (Fig. 4). For visualization, vector 4 was chosen
instead of vector 3, which had nearly the same information content but
was less powerful in separating C24 WT from sdd1-1 samples. Plants
with the Col-2 genetic background were quite dissimilar from C24
plants, whereas the difference between the two wild types and their
corresponding mutant metabolic phenotypes were smaller or even
partially overlapping (C24 WT / sdd1-1). This finding corresponds
well to the results obtained from Student’s t-tests of individual metabo-
lites, where metabolite differences were both more abundant and more
extreme for the Col2 WT / dgd1 samples when compared with the C24
WT / sdd1-1 samples.

Furthermore, PCA data can be used to analyze which metabolites
exert the largest influence on the basic vector calculation (Fig. 5).
For example, for computing the most powerful PCA vectors 1 and 2,
many metabolites had values near zero, indicating that only minor
variances were observed. However, some metabolites such as isoma-
ltose, unknown #106, serine, threonine, β-alanine, and the
unknown indole derivative #107 had a comparatively strong impact
on the calculation of PCA vector 2, which separated predominantly
Col-2 WT from dgd1 plants. These compounds also demonstrated 
p < 0.01 in the t-test comparison. Additionally, PCA vector 2 was
strongly influenced by metabolites that were not significantly differ-
ent in t-tests, either because these metabolites did not match the 
t-test threshold (pyroglutamic acid, p = 0.015; phenylalanine, 
p = 0.048; glutamate, p = 0.022) or because they were not detectable
in one of the two genotypes being compared, which causes t-tests to
fail (proline, ascorbate). Analysis of PCA vector loading supplies
information for the interpretation of metabolic profiles that extends
the results obtainable by classical t-tests. For ease of visualization,
vector 4 was left out in this presentation.

The ability to assign plant samples to groups using PCA of 
metabolic profiles offers an exciting perspective for plant functional
genomics. On one hand, such groups are likely to be defined 
predominantly by different genotypes, and on the other hand, the
use of PCA enables the defining elements of metabolic profiles to be
distinguished. Furthermore, with metabolic analysis, response of
metabolic networks to changes in single-gene loci is demonstrably
complex, indicating how important it will be to have good method-
ologies in functional genomics that are capable of distinguishing
cause from effect. Metabolite profiling is a valuable additional tool
in the plant functional genomics repertoire and is worthy of wide
application within and beyond the plant kingdom.

Experimental protocol
Arabidopsis plants were grown on GS 90 standard soil in growth chambers in
a 16 h light / 8 h dark photoperiod, changing from 60% humidity and 20°C
during the day to 75% humidity and 18°C at night. Light intensity was fixed
to 120 µmol/m2/s. After approximately 8 h of the photoperiod, 300 mg fresh
weight rosette leaves were harvested randomly from trays that had alternate
lines of pots containing wild-type and transgenic plants (n = 43 (Col-2 WT),
45 (dgd1), 35 (C24 WT), and 28 (sdd1-1)). Extraction and fractionation was
performed as reported recently8. Lipids were transmethylated by adding 

900 µl chloroform and 1 ml methanol including 3% (vol/vol) sulfuric acid at
100°C for 4 h. Sulfuric acid was removed using three 4 ml portions of water.
The lipophilic phase was dried over anhydrous sodium sulfate and carefully
concentrated to about 80 µl. Before analysis, 20 µl of pyridine plus 20 µl of
N-methyl-N-trimethylsilyl-trifluoroacetamide were added. 13C12-Sucrose,
13C6-glucose, d8-glycerol, d4-ethanolamine, d6-ethylene glycol, d3-aspartate,
13C5-glutamate, d4-alanine, d8-valine, d3-leucine, and d5-benzoic acid were
obtained from Campro Scientific (Emmerich, Germany) and used for exact
quantification. GC/MS was performed using a GC 8000/Voyager mass
spectrometer system (ThermoQuest, Manchester, UK). Peak finding and
quantification of selective ion traces was accomplished using the instru-
ment’s MassLab FindTarget software. PCA and HCA pattern recognition
was performed using the Pirouette software (Infometrix, Woodinville, WA)
with log10 data transformation and mean-center preprocessing. Principal
component analysis was performed with cross-validation. Hierarchical
component analysis was performed using Euclidean distances with com-
plete linkages.
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