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Codon usage is biased in natural genes and can strongly affect heterolo-
gous expression (1). Many organisms are enriched for poorly-adapted 
codons at the N terminus of genes (2–5). Several studies suggest that 
these codons slow ribosomal elongation during initiation and lead to 
increased translational efficiency (2, 4, 6). Most organisms also display 
reduced mRNA secondary structure at the N terminus (7), and studies 
using synthetic codon gene variants have resulted in conflicting theories 
on which mechanisms are causal for expression changes (REF ALL) (8). 
Information about the causes and effects of codon bias has been restrict-
ed to relationships inferred from natural sequences using genome-wide 
correlation (2, 3, 5, 9, 10), conservation among species (4), or relatively 
small libraries of synthetic genes with synonymous codon changes (3, 8, 
11–15). Here, we separate and quantify the factors controlling expres-
sion at the N terminus of genes in E. coli by building and measuring 
expression from a large synthetic library of defined sequences. 

We used array-based oligonucleotide libraries (16) to generate 
14,234 combinations of promoters, ribosome binding sites (RBSs), and 
11 N-terminal codons in front of super-folder GFP (sfGFP) on a plasmid 
that constitutively co-expresses mCherry (fig. S1) (17–19). The se-
quences for the N-terminal peptides correspond to the first 11 amino 
acids (including the initiating methionine) of 137 endogenous E. coli 
essential genes (20) that utilize the entire codon repertoire (fig. S2). We 
expressed these sfGFP fusions from two promoters and three RBSs of 
varying strengths (19). We also included the natural RBS for each en-
dogenous gene. For each combination of promoter, RBS, and peptide 
sequence, we designed a set of 13 codon variants to represent a wide 
range of codon usages and secondary structure free energies across the 
translation initiation region. We studied the interactions between the 5′ 
untranslated region (UTR) and N-terminal codon usage because initia-
tion is thought to be the rate-limiting step for translation (1), this region 
has been previously implicated in determining most expression variation 
(8), N-terminal codons are more highly conserved (21), and rare codons 
are enriched at the N terminus of natural genes and especially those that 
are highly expressed (2). 

We measured DNA, RNA, and protein levels from the entire library 
using a multiplex assay (Fig. 1C and figs. S3 and S4) (19). DNA and 

RNA levels were determined using 
DNASeq and RNASeq. Protein levels 
were determined by FlowSeq; 7327 
(51.5%) constructs were within the 
quantitative range of our assay (R2 = 
0.955, p < 2×10−16; fig. S5). We nor-
malized the expression measurements 
across each 13-member codon variant 
set as fold change from log-average to 
control for changes in promoters, RBSs, 
and peptide sequence (fig. S6). 

Changing synonymous codon usage 
in the 11-aa N-terminal peptide resulted 
in a mean 60-fold increase in protein 
abundance from the weakest to strong-
est codon variant even though >96% of 
the gene remained unchanged. For over 
160 codon variant sets (25% of sets 
within range), the difference was >100-
fold. For each codon variant set, we 
included sequences encoding the most 
common or rare synonymous codon in 
E. coli for every amino acid. The rare 
codon constructs displayed a mean 14-
fold (median 4-fold) increase in protein 
abundance compared to common codon 
constructs (Fig. 1A; p < 2×10−16, two-

tailed t test) even though common codons are generally thought to in-
crease protein expression and fitness (1, 9, 22, 23). 

To understand why rare codons cause increased expression, we first 
examined several codon usage metrics, but they could only explain <5% 
of expression differences (fig. S7A). New metrics that take into account 
both tRNA availability and usage (nTE) show stronger N-terminal en-
richment (4). We calculated nTE scores for E. coli and found that nTE 
scores were similar to the tRNA adaptation index (tAI) (R2 = 0.847, p < 
2×10−16), did not correlate well with N-terminal codon enrichment in the 
E. coli genome (R2 = 0.107, p = 0.00654), and did not significantly cor-
relate with codons that increased protein expression in our data set (R2 = 
0.024, p = 0.124). Others have proposed that slow ribosome progression 
at the N terminus due to rare codons increases translational efficiency (2, 
13, 14). This ‘codon ramp’ hypothesis should apply primarily in the 
context of strong translation, but we found that using rare codons at the 
N terminus increases expression regardless of translation strength (Fig. 
1B). Finally, ribosome occupancy profiling in E. coli has shown that 
tRNA abundance does not correlate to translation rate, but that specific 
rare codons can create internal Shine-Dalgarno-like motifs that can alter 
translational efficiency (6). We looked for an association between the 
presence of internal Shine-Dalgarno-like motifs and changes in expres-
sion, and found it to be weak but statistically significant (R2 = 0.002, p < 
1.3×10−5). 

We built a simple linear regression model correlating the use of each 
individual synonymous codon with expression changes (Fig. 2A and fig. 
S8). For most amino acids, we found a link between the rarity of the 
codon and increased expression (Fig. 2B). There is a strong correlation 
between codons that affected expression and their relative N-terminal 
enrichment in E. coli (R2 = 0.73, p < 2.3×10−9; Fig. 2C). Using relative 
translation efficiency instead of relative expression produced similar 
results (fig. S9). 

Decreased GC-content correlated with increased protein expression 
(R2 = 0.12, p < 2×10−16; Fig. 3A). Rare codons in E. coli are frequently 
A/T-rich at the third position, and codons ending in A/T more frequently 
correlate with increased expression than synonymous codons ending in 
G/C. (fig. S10). This association suggested a link to mRNA transcript 
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secondary structure (8), and so we computationally predicted RNA 
structure over the first 120 bases of each transcript using NUPACK (24). 
We found that increased secondary structure was correlated with de-
creased expression, explaining more variation than any other variable we 
measured (R2 = 0.34, p < 2×10−16; Fig. 3A). We made a similar linear 
regression model relating individual codon substitution to change in 
secondary structure free energy rather than expression levels, and found 
a strong correlation between codons that decreased secondary structure 
and those that increased protein expression (R2 = 0.87, p < 2×10−16; Fig. 
3B). Additionally, codon adaptation metrics at the N terminus correlate 
as well to change in secondary structure free energy as they do to change 
in protein expression (fig. S7B). 

We used multiple regression to control for the secondary structure 
changes between codon variants and found that no relationship remained 
between N-terminal codon adaptation and increased expression (R2 = 
0.05, p = 0.197; Fig. 3D). Additionally, constructs with constant tAI still 
show a correlation between expression and secondary structure, but con-
structs with constant secondary structure have no correlation between 
tAI and expression. (Fig. 3, E and F). Finally, if secondary structure is 
the dominant factor, we would expect a disproportionate enrichment of 
A over T due to G-U wobble pairing. Indeed, nucleotide triplets with A 
at the wobble position were more consistently correlated with expression 
our dataset and with enrichment at the N terminus of E. coli genes (fig. 
S11). 

Kudla et al. show that local RNA structure in the region between -4 
to +38 of translation start is most correlated with expression change (8). 
Our data indicate that the region centered on +10 is most correlated with 
expression changes (Fig. 4 and figs. S12 to S14), closely matching in-
vitro translation studies (25). This region remained the most correlated 
for the subset of constructs with no change in total free energy of folding 
across the N-terminal region (figs. S15 and S16). While secondary struc-
ture is known to affect the RBS (26), when altering only codon usage, 
RNA structure after the start codon, and not at the RBS, is the major 
contributor to expression differences. A multiple linear regression model 
that combines promoter and RBS choice, as well as N-terminal second-
ary structure and GC content still explains only 54% of variation in ex-
pression levels. Amino acid composition effects on sfGFP folding and 
inadequacies in computational RNA structure prediction could be par-
tially responsible. However, there are likely additional effects left to 
uncover, and the extent to which codon usage beyond the N-terminal 
region alters gene expression remains unresolved (8, 14). 

The N terminus of genes in almost all bacteria display reduced sec-
ondary structure, but enrichment of poorly-adapted N-terminal codons 
are only found in bacteria with GC content of at least 50% (3). Recent 
work further shows that AT-rich codons as opposed to rare codons them-
selves are preferentially selected, thus implicating secondary structure as 
the driving force for N-terminal codon selection in most bacteria (5). 
Despite mechanistic differences in translation between prokaryotes and 
eukaryotes, both single- and multi-cell eukaryotes also have reduced N-
terminal secondary structure (7). For synthetic GFP templates in yeast, 
secondary structure is more correlated with expression changes than 
codon adaptation metrics (10). Here, we do not examine other factors 
that might shape natural sequence such as codon pair bias (1, 27), co-
translational folding (4, 12, 28), or growth conditions (11, 15). Natural 
genomic sequence is often not suited to distinguish between conflicting 
hypotheses of how sequence affects function; multiplexed assays of 
large synthetic DNA libraries provide a powerful method to examine 
such hypotheses in a controlled manner. 
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Fig. 1. Gene expression measurements of the reporter library. (A) N-terminal peptide sequences encoding the most rare 
(R) codon variants show increased expression when compared to the most common ones (C). (B) Fold change in expression 
between C and R codon variants is largely independent of RBS strength. (C) Protein expression of the library (as measured 
by the sfGFP:mCherry ratio) covers a ~200-fold range. 13-member codon variant sets are grouped into columns by 
promoter/RBS combination (right). Codon variants include C, R, wild-type sequence (wt), and 10 sequences with varying 
secondary structure (∆G). Not shown are two additional low promoter panels, which were mostly outside the quantitative 
FlowSeq range. Dark gray squares had insufficient data, and light gray squares correspond to duplicate constructs. 
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Fig. 2. Rare codons generally increase expression levels 
(A) The average fold change in expression is correlated with 
the choice of codon. The y-axis is the slope of a linear model 
linking codon use to expression change. Codons are sorted 
left to right by increasing genomic frequency, and colored 
according to their relative synonymous codon usage (RSCU) 
in E. coli. (p-values after Bonferroni correction: *: p < 0.05, **: 
p < 0.005, ***: p < 0.001). (B) The individual codon slopes (y-
axis) as in (A) show an inverse relationship with RSCU (x-
axis). (C) The individual codon slopes correlate with 
enrichment of codons at the N terminus of genes in E. coli. 
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Fig. 3. Rare codons alter expression by reducing mRNA secondary structure (A) Expression changes are correlated 
with relative changes in %GC content. Each boxplot includes +/− 2% of centered value. (B) Expression increases correlate 
to relative increases in free energy of folding at the front of the transcript (ΔΔG). Each boxplot includes +/− 2 kcal/mol of 
centered value. (C) Individual codon slopes (same as Fig. 2A y-axis) correlate with the ΔΔG per individual codon 
substitution. (D) After controlling for ΔΔG with a multiple linear regression, there is no longer any relationship between 
individual codon slopes and RSCU (compare with Fig. 2B). (E) The ΔΔG versus change in tAI is plotted for all constructs 
within the quantitative range. Constructs are colored by their relative fold change in expression from the average codon 
variant within the set. (F) The two lower panels show subsets of constructs corresponding to the shaded boxes in (E). The 
left panel shows points with constant codon adaptation and varied secondary structure, while the right panel shows points 
with constant secondary structure and varied codon adaptation. 
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Fig. 4. mRNA structure downstream of start codon is 
most correlated with reduced expression. Relative 
hybridization probabilities averaged in 10nt windows are 
plotted against their correlation with expression change as a 
function of position (-20 to +60 from ATG). In the top panel, 
the best and worst 5% of constructs – as ranked by relative 
expression within a codon variant set – are grouped and 
plotted as blue and red ribbons, respectively. The ribbon tops 
and bottoms are one standard deviation from the mean, 
which is shown as a solid line. The bottom panel shows the 
p-value for linear regressions correlating hybridization 
probabilities within each window to expression fold change in 
all constructs. 
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