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The concurrent development of high-density array technologies
and the complete sequencing of a number of microbial
genomes is providing the opportunity to comprehensively and
efficiently survey the transcription profile of microorganisms
under different conditions and well-defined genotypes.
Microarray-based studies are uncovering broad patterns of
genetic activity, providing new understanding of gene functions
and, in some cases, generating unexpected insight into
transcriptional processes and biological mechanisms. One
topic that has come to the forefront is how best to effectively
manage and interpret the large data sets being generated.
Although progress has been made, this remains a challenging
opportunity for functional genomics research.
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Introduction
During the last half of the 20th century, the analysis of the
regulation and function of genes has largely been driven by
step-by-step studies of individual genes and proteins. In
the past decade, a paradigm shift has emerged in which we
are now able to produce large amounts of data about many
genes in a highly parallel and rapidly serialized manner. An
important tool in this process has been the development of
DNA microarrays. These arrays consist of a highly ordered
matrix of thousands of different DNA sequences that can
be used to measure DNA and RNA variation in applica-
tions that include gene expression profiling, comparative
genomics and genotyping [1–3,4••]. In this review we pre-
sent an overview of DNA microarray technology and its
application to the study of gene expression in microbial
systems. We also discuss the looming question of how best
to manage, share and interpret the large data sets generat-
ed by microarray experiments.

DNA microarray technology overview
DNA microarrays provide a format for the simultaneous mea-
surement of the expression level of thousands of genes in a
single hybridization assay. Each array consists of a repro-
ducible pattern of thousands of different DNAs (primarily
PCR products or oligonucleotides) attached to a solid support,
usually glass. Fluorescently labeled RNA or DNA prepared
from messenger RNA is hybridized to complementary DNA

on the array and then detected by laser scanning.
Hybridization intensities for each DNA sequence on the
array are determined using an automated process and con-
verted to a quantitative read-out of relative gene expression
levels. The data can then be further analyzed to identify
expression patterns and variation that correlate with cellular
development, physiology and function. 

Several methods have been described for producing
microarrays and are comprehensively reviewed else-
where [5•,6–9]. In this review, two basic types of array
technology have been surveyed: spotted microarrays in
which pre-synthesized single-strand or double-strand
DNAs are bound, or ‘printed’, onto glass slides [10,11] and
high-density oligonucleotide arrays (sometimes referred to
as ‘oligo chips’) in which sets of oligomers are synthesized
in situ on glass wafers using a photolithographic manufac-
turing process [12,13]. Spotted microarrays can be
produced in-house or accessed through commercial service
providers (see [4••] for a list of web sites with information
on making and using DNA microarrays). High-density
oligonucleotide arrays are available commercially.
Although comprehensive expression profiles can be pro-
duced by both types of array, there are some fundamental
differences between the two approaches (Figure 1). 

On spotted arrays, genes are generally represented by sin-
gle DNA fragments, greater than several hundred base
pairs in length. The DNA samples hybridized to the array
are, in most cases, labeled by incorporating fluorescently
tagged nucleotides during oligo-primed reverse transcrip-
tion of messenger RNA [7]. Different fluorophores
(generally Cy3- and Cy5-dUTP) are used to label cDNAs
from control (reference) and experimental (test) RNAs.
The labeled cDNAs are then mixed together prior to
hybridization to the array. Relative amounts of a particular
gene transcript in the two samples are determined by mea-
suring the signal intensities detected for both fluorophores
and calculating signal ratios. 

On GeneChip® oligonucleotide arrays (Affymetrix, Inc,
Santa Clara, CA) a given gene is currently represented by
15–20 different 25-mer oligonucleotides that serve as
unique, sequence-specific detectors. An additional control
element on these arrays is the use of mismatch (MM) con-
trol oligonucleotides that are identical to their perfect
match (PM) partners except for a single base difference in
a central position. The presence of the mismatched
oligonucleotide allows cross-hybridization and local back-
ground to be estimated and subtracted from the PM signal.
In the GeneChip expression assay eukaryotic mRNA is
converted to biotinylated cRNA from oligo-dT-primed
cDNA [13]. (Options for labeling prokaryotic mRNAs are
discussed below.) Each sample is hybridized to a separate
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Figure 1



array. Transcript levels are calculated by reference to
cRNA spikes of known concentration added to the
hybridization mixture. Differences in mRNA levels
between samples are determined by comparison of any
two hybridization patterns produced on separate arrays of
the same array type.

There are important differences in performance and
information generated by the two types of arrays due to
these differences in assay and gene representation. First,
spotted arrays hybridized simultaneously with two dis-
tinctly labeled samples intrinsically normalize for noise
and background in a pairwise comparison. The transcrip-
tional read-out for these paired samples is provided as
expression ratios and requires that different samples of
an experimental set be hybridized with the same control
or reference sample. The high-density oligonucleotide
array assay, on the other hand, allows flexibility in sam-
ple comparisons and provides an estimate of the levels of
gene transcripts in individual samples. Second, on
oligonucleotide arrays the oligomer probes are designed
to uniquely represent the cognate gene thus minimizing
cross-hybridization between similar sequences. The
potential for cross-hybridization between genes with sig-
nificant levels of sequence similarity is high using
spotted microarrays. In Escherichia coli, for example, out
of a total of 4288 open reading frames (ORFs), 556 ORFs
contain regions of >200 bp that share a minimum of 50%
identity to at least one other ORF in the genome [14•].
Finally oligonucleotide arrays require gene sequence
information for specifying the de novo synthesis of the
oligomers on the array, whereas spotted arrays can be
produced from both known and unknown cDNA and
PCR fragments. 

Application of microarrays to studies of
microorganisms
The relatively small genomes of prokaryotes and simple
eukaryotes such as yeast are well suited to global expression
profiling with microarray technologies currently available. All
ORFs and even intergenic regions can be represented, allow-
ing unbiased assessment of an organism’s expression profile.
When array experiments are coupled with well-controlled

experimental systems and well-characterized genotypes, a
striking amount of highly interpretable information can be
generated. The information can be used to assign function to
unknown genes, enlarge our understanding of cellular
processes, identify potential drug targets and generate
genome-wide snapshots of transcriptional activity in
response to any stimulus or developmental trigger.

Yeast
The availability of the complete genome sequence and well-
characterized genetics has made Saccharomyces cerevisiae a
popular focus of study with both spotted and oligonucleotide
arrays. Work describing microarray analysis of gene expres-
sion across the entire yeast genome was first reported in 1997
[11,15,16]. Spotted arrays containing comprehensive sets of
PCR-amplified ORFs were used to measure transcript
changes accompanying the metabolic shift from fermenta-
tion to respiration [11] and changes induced by a variety of
culture manipulations, including heat- and cold-shock [15].
Differences in transcription profiles for yeast grown in rich
versus minimal media were determined using oligonu-
cleotide arrays representing more than 6200 yeast genes [16].
A relatively small number of genes with dramatically differ-
ent expression levels (approximately 3–5% of the ORFs
surveyed demonstrated greater than four-fold changes in
expression levels) were identified in these studies, while the
majority of highly expressed genes were present at similar
levels under the different growth conditions. 

Genome-wide expression profiles have been generated for
cell cycle progression [17•,18•] and sporulation in budding
yeast [19•]. These studies have been a rich source of new
information leading to the identification of groups of genes
co-regulated during the cell cycle or sporulation. Potential
functions of many previously uncharacterized genes were
suggested by their display of expression patterns similar to
that of known genes or during functionally defined cell
states. (Note: complete data sets from many of the studies
cited here are available on the World Wide Web; see for
example [17•–19•]).

In a study of cellular response to DNA damage, the yeast
GeneChip array was used to examine transcriptional
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Legend for Figure 1

Diagram of array preparation and expression assay for spotted DNA
microarrays and high-density oligonucleotide arrays. (a) Array
fabrication and gene representation. Spotted DNA arrays are made by
printing amplified DNAs prepared from genomic or cDNA onto glass
slides. Each spot on the glass slide corresponds to a contiguous gene
fragment of several hundred bases or more. Pre-synthesized oligomers
can also be spotted (data not shown). High-density oligonucleotide
arrays are manufactured using a process of light-directed combinatorial
chemical synthesis to produce thousands of different oligomer probes
in a highly ordered array on a small glass chip. Genes are represented
by 15–20 different oligomer pairs (PM, perfectly matched and MM,
mismatched) on the array. (b) Expression assay. In the expression assay
for spotted arrays, messenger RNAs from samples 1 (test) and

2 (reference) are either directly or indirectly labeled with different
fluorophores, hybridized to DNA on the glass slide and subsequently
scanned to independently detect both fluorophores. Colored dots
labeled x, y and z at the bottom of the image correspond to hypothetical
genes present at increased levels in sample 1 (x), increased levels in
sample 2 (y), and similar levels in samples 1 and 2 (z). In the
GeneChip® expression assay RNA is labeled in a two-step linear
amplification process to produce biotinylated cRNA. After hybridization,
biotin-cRNA bound to the array is stained with a fluorophore conjugated
to avidin and detected by laser scanning. Sets of paired
oligonucleotides for hypothetical genes present at increased levels in
sample 1 (x), increased levels in sample 2 (y) and similar levels in
samples 1 and 2 (z) are shown at the bottom of the diagram.



responses to alkylating agents in S. cerevisiae [20•]. The cat-
alogue of genes whose expression is induced by DNA
damage was shown to increase by more than 15 fold.
Northern blots confirmed the array results for 48 out of 50
ORFs identified as either responsive (42) or nonresponsive
(8) to the alkylating agent. In other studies, several cellu-
lar functions have been analyzed by combining transcript
profiling with genetics: transcription initiation [21]; non-
sense-mediated mRNA decay [22]; and the
mitogen-activated protein kinase cascade [23]. Use of
microarrays to examine drug signature patterns and identi-
fy effects mediated through pathways independent of the
putative drug target have been described [24,25].
Application of this kind of analysis to drug development
programs should improve the odds of developing useful
therapeutics [26]. 

Another example of ways in which expression profiling
with yeast microarrays has been applied to date is the work
by Ferea et al. [27] who used spotted arrays to look at adap-
tive evolution under natural selection. In this interesting
study, the authors were able to identify similar alterations
in expression in three independently evolved strains,
which is consistent with proposed mechanisms for
increased fitness under the selection regime.

Bacteria 
One of the big challenges in prokaryotic expression analy-
sis is the specific labeling of mRNA for microarray
hybridization [28]. Unlike eukaryotic labeling strategies
that rely on the presence of a polyA tail to enrich for
mRNA, a reliable method to enrich or specifically label
prokaryotic mRNA has not been available. In the first pub-
lished report on bacterial gene expression monitoring
using high density oligonucleotide arrays, de Saizieu et al.
[29] showed that the presence of rRNA does not prevent
detection of gene transcripts present down to a level of
several copies per cell. In this study, a direct RNA labeling
protocol was described that introduces label by photo-cou-
pling with psoralen-biotin. Subsequent studies from
Blattner and coworkers [14•] compared radioactive and flu-
orescent labeled cDNAs prepared from total E. coli RNA
that were hybridized to arrays spotted on membranes and
glass. On the basis of their results, they conclude that the
microarray approach with fluorescent-labeled cDNA is
more reproducible than radioactive hybridization to DNA
dot blots. 

The power of genome-wide bacterial expression analysis
was demonstrated by Tao et al. [30•]. In this study the
expression levels of 4290 genes representing the complete
E. coli genome were determined with nylon macroarrays
for bacteria grown in rich or minimal media. Similar to
studies in yeast [16], this very simple experimental design
delivered a large amount of information: 225 genes were
expressed at significantly higher levels on minimal glucose
medium, while the expression levels of 119 genes were
increased in glucose-rich medium. In rich media the

expression of genes involved in protein synthesis
increased, whereas cells grown in minimal media turned
on the expression of genes involved in biosynthetic path-
ways as well as the synthesis of stress tolerance proteins.

Wilson and coworkers [31••] explored drug-induced alter-
ations in global gene expression in Mycobacterium
tuberculosis. They monitored expression changes in
response to the antituberculosis drug isoniazid. Several
genes in a biosynthetic pathway relevant to the drug’s
mode of action were identified in the induced gene set. In
addition genes were induced that are not directly related to
the biosynthetic pathway. These newly identified genes
may define new drug targets. 

Viruses
Microarray-based expression studies of viral systems have
focused on both host and viral genomes. In a study of host
cell response following infection with a viral pathogen, Zhu
et al. [32•] examined mRNA changes in primary human
foreskin fibroblasts 40 minutes, 8 hours, and 24 hours post
infection with the human cytomegalovirus (HCMV). Using
the Affymetrix HuGeneFl array, they monitored the
response of ~6800 human mRNAs following infection.
After 24 hours, 364 mRNAs had changed in response to the
virus by a factor of three or more. The authors speculate
that several of the cellular genes whose mRNA levels
change after infection of fibroblasts might profoundly influ-
ence HCMV replication and pathogenesis. Meanwhile,
Chambers et al. [33] addressed the HCMV-host cell expres-
sion program from the other direction by examining
changes in viral gene transcripts following infection.

Data analysis strategies
The data format produced by a microarray assay typically
consists of a list of genes and corresponding values that
represent relative RNA transcript levels. A high-density
oligonucleotide array, such as the GeneChip yeast
genome array (YG s98), generates 9337 data points for
every hybridization reaction. In a small scale experiment
consisting of only five samples with two replicates each
such an array experiment will produce approximately
100,000 data points. It quickly becomes imperative that
strategies are in place and computing resources available
to manage the large quantities of data generated by
microarray experiments [34].

Following acquisition and processing of the fluorescent
array image, there are three basic steps required for effi-
cient and effective data analysis: data normalization,
data filtering, and pattern identification. To compare
expression values directly, it is usually necessary to
apply some sort of normalization strategy to the data,
either between paired samples or across a set of experi-
ments. Following this, data reduction can be done by
filtering out uninformative genes; for example, genes
that are expressed below a user defined threshold or
genes that did not vary their expression level during the
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course of the experiment. The next step is to find pat-
terns and groups in the data that can be used to assign
biological meaning to the expression profiles. The
methods used for data mining and interpretation are var-
ied, ranging from straightforward lists of increased and
decreased genes based on user-defined thresholds to the
implementation of sophisticated clustering and visual-
ization programs, such as hierarchical clustering [35] and
self-organizing maps also called k-means cluster-
ing [36–38] (Figure 2). Hierarchical clustering has been
traditionally used in phylogenetic analysis and typically
uses a progressive combination of elements that are the
most similar, while self-organizing maps sample the
complete data set to determine the distances of the data
points from randomly chosen points, called centroids.
Both methods have their own unique advantages, but
generally succeed in grouping the genes or samples
based on their expression pattern. (Table 1 provides a
list of data analysis and visualization programs suitable
for microarray data.)

The data mining strategy used depends on the experi-
mental design and can be broadly divided into two
categories: differential gene expression and coordinated
gene expression [39••]. The differential gene expression
approach generally consists of paired comparisons
between normal/abnormal data such as from healthy and

pathological specimens or wild-type and mutant geno-
types. In a study of normal human colon and colon tumor
tissue, hierarchical clustering was used to differentiate
cancerous from normal tissue [40•]. Taking this approach,
the majority of cancerous samples were identified cor-
rectly. The introduction of prediction strength criteria by
Golub et al. [41••] significantly improved the accuracy of
phenotype predictions based on microarray expression
patterns because it allows the identification of uncertain
calls. These authors set out to differentiate between
acute myeloid leukemia and acute lymphoid leukemia. A
set of predictor genes whose expression pattern strongly
correlates with the disease was chosen. This set of ‘pre-
dictor genes’ was able to correctly identify the type of
leukemia with a 100% success rate, because marginal calls
could be identified. 

Coordinated gene expression analysis involves the assess-
ment of the expression levels of a large number of genes
over a period of time or through a series of experimental
conditions, such as the studies of the transcriptional pro-
gram during sporulation in budding yeast [19•] or of cell
cycle variation [17•,18•]. In these kinds of studies effort
has to be put into normalizing the data set across samples
[39••], because it is important to distinguish real, biologi-
cal change from random noise or non-specific
experimental variation. In this respect, the value of doing
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Figure 2

Examples two types of clustering programs
applied to the same data set. Samples from
control (1 and 2) and isopropyl-β-D-
thiogalactopyranoside (IPTG)-treated
(3 and 4) E. coli K-12 (MG1655) cells were
hybridized to high-density oligonucleotide
arrays containing probes for more than
4200 E. coli ORFs. Expression values were
determined using the GeneChip® software
analysis program and scaled to a common,
global average expression level. (a) Two of the
20 clusters produced by a self-organizing
map program [36]. The red lines indicate the
error bars. In cluster 1, 52 genes follow a
similar pattern with increases in expression
after induction (i.e. after IPTG treatment). Ten
of the cluster members are shown in the list,
including the three lac operon genes. In
cluster 2, there are 40 genes with reduced
expression after induction. Ten of the
members are listed. (b) Two selected clusters
produced by a hierarchical clustering program
[35]. Cluster 1 generally follows a pattern of
increased expression after induction. The
three highly induced lac genes are grouped in
a small sub-cluster. Cluster 2 is a group of
genes whose expression levels are reduced
after induction. Not all clusters are shown.



replicate experiments cannot be overestimated, as
Claverie [39••] succinctly states: “… no data processing or
elegant protocol can substitute for the requirement of
multiple (at least two) independent determinations of the
expression intensities.” 

The value of looking at the expression pattern of a com-
plete genome is most fully realized when the data is linked
to other databases. The public databases provided by
NCBI (National Center for Biotechnology information,
http://www.ncbi.nlm.nih.gov/) (GenBank, Entrez, BLAST
and PubMed) are a valuable, integrated set of data and
tools and KEGG (Kyoto Encyclopedia of Genes and
Genomes, http://www.genome.ad.jp/kegg/) offers a com-
prehensive database of biological pathways. These tools
make it possible to annotate and identify functions in
genes with a common expression profile.

Conclusions
Expression profiling with DNA microarrays has only just
begun to be applied in the microbiology community, yet a
wealth of data has already been generated. Effective uti-
lization of this data and what is to come will require several
steps forward: accurate and up-to-date gene annotation,
generally agreed upon rules for data standardization, and
mechanisms for reporting and sharing complete files of
microarray expression data. In the near future we should
also expect to see new tools and statistically validated
approaches to mining these large data sets.

Improvements currently being made in labeling protocols
for prokaryotic mRNAs will allow for more sensitive
expression assays, down to less than one copy of mRNA
per cell (C Rosenow, G Miyada, personal communication).
Increased standardization in labeling protocols will also
help to minimize artefactual expression profile differences
between data generated in different laboratories. 

The ability to measure RNA expression profiles across
entire genomes provides a level of information not previ-
ously attainable. Sophistication in analyzing these data
effectively and comprehensively is continually growing.
This, combined with the ability to conduct experiments in
which the genotype and growth environment of microor-
ganisms is carefully controlled, will fundamentally and

dramatically advance our understanding of the basic
processes of living organisms.

Acknowledgements
The authors thank Tom Gingeras, Linda McAllister, Garry Miyada and
Mark Durst for critical reading of the manuscript. We thank Andy Lau for
excellent support in preparation of Figure 1.

References and recommended reading
Papers of particular interest, published within the annual period of review,
have been highlighted as:

• of special interest
••of outstanding interest

1. Lander E: Array of hope. Suppl Nat Genet 1999, 21:3-4.

2. Brown PO, Botstein D: Exploring the new world of the genome
with DNA microarrays. Suppl Nat Genet 1999, 21:33-37.

3. Case-Green SC, Mir KU, Pritchard CE, Southern EM: Analysing
genetic information with DNA arrays. Curr Opin Chem Biol 1998,
2:404-410.

4. Ferea TL, Brown PO: Observing the living genome. Curr Opin 
•• Genet Dev 1999, 9:715-722. 
An overview of array technology with emphasis on spotted arrays. Includes
table of web sites for making and using DNA arrays and useful information
on pattern recognition and data visualization strategies.

5. Lipshutz RJ, Fodor SPA, Gingeras TR, Lockhart DJ: High density 
• synthetic oligonucleotide arrays. Suppl Nat Genet 1999, 21:20-24.
This review includes a summary of the manufacturing process for high-den-
sity oligonucleotide arrays and describes how these arrays are being
applied, including gene expression monitoring and genotypic analysis.

6. Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM: Expression
profiling using cDNA microarrays. Suppl Nat Genet 1999, 21:10-14.

7. Eisen MB, Brown PO: DNA arrays for analysis of gene expression.
In Methods in Enzymology: cDNA Preparation and Characterization.
vol 303. Edited by Weissman SM. Academic Press; 1999:179-205.

8. Bowtell DDL: Options available-from start to finish-for obtaining
expression data by microarray. Suppl Nat Genet 1999, 21:25-32.

9. Winzeler EA, Schena M, Davis RW: Fluorescence-based expression
monitoring using microarrays. In Methods in Enzymology: Expression
of Recominant Genes in Eukaryotic Systems, vol 306. Edited by
Glorioso J, Schmidt MC. Academic Press: London; 1999:3-18. 

10. Schena M, Shalon D, Davis RW, Brown PO: Quantitiative
monitoring of gene expression patterns with a complementary
DNA microarray. Science 1996, 270:467-470.

11. De Risi JL, Iyer VR, Brown PO: Exploring the metabolic and genetic
control of gene expression on a genomic scale. Science 1997,
278:680-686.

12. Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J,
Lockhart DJ, Morris MS, Fodor SPA: Accessing genomic
information with high-density arrays. Science 1996, 274:610-614.

13. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS,
Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL: Expression
monitoring by hybridization to high-density oligonucleotide
arrays. Nat Biotechnol 1996, 14:1675-1680.

290 Techniques

Table 1

Resources and software for microarray data analysis.

Resources and software URL

Spotfire Pro for Windows http://www.spotfire.com/
DataDesk from Datadescription Inc. http://www.datadesk.com/
GeneCluster http://www.genome.wi.mit.edu/MPR/software.html
Cluster and Tree View http://rana.stanford.edu/software/
Wisconsin Genetic Package (GCG) SeqLab http://www.gcg.com/index.html
PHYLIP Phylogenetic inference package http://evolution.genetics.washington.edu/phylip.html
GenExplore http://www.applied-maths.com/home.html
GeneSpring http://www.sigenetics.com/index.html



14. Richmond CS, Glasner JD, Mau R, Jin H, Blattner FR: Genome-wide 
• expression in Escherichia coli K-12. Nucleic Acid Res 1999,

27:3821-3835.
Changes in RNA levels after exposure of E. coli to heat shock or IPTG are
compared using two different methods: hybridization of radioactive cDNA to
spot blots on nylon membranes and fluorescence-based hybridization to
glass microarrays. 

15. Lashkari DA, DeRisi JL, McCusker JH, Namath AF, Gentile C, Hwang
SY, Brown PO, Davis RW: Yeast microarrays for genome wide
parallel genetic and gene expression analysis. Proc Natl Acad Sci
USA 1997, 94:13057-13062.

16. Wodicka L, Dong H, Mittmann M, Ho M-H, Lockhart DJ: Genome-
wide expression monitoring in Saccharomyces cerevisiae. Nat
Biotechnol 1997, 15:1359-1367.

17. Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, 
• Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman, Lockhart DJ,

Davis RW: A genome-wide transcriptional analysis of the mitotic
cell cycle. Mol Cell 1998, 2:65-73. [http://genomics.stanford.edu]

One of the first studies to report genome-wide patterns of expression
through a series of cell states. This study measures mRNA transcript levels
during the yeast cell cycle using high-density oligonucleotide arrays.

18. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, 
• Brown PO, Botstein D, Futcher B: Comprehensive identification of

cell cycle-regulated gene of the yeast Saccharomyces cerevisiae
by microarray hybridization. Mol Biol Cell 1998, 9:3273-3297.
[http://cellcycle-www.stanford.edu]

Study measuring genome-wide mRNA transcript levels during the yeast cell
cycle using spotted DNA microarrays. Promoter elements predictive of cell-
cycle regulation were identified.

19. Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, 
• Herskowitz I: The transcriptional program of sporulation in

budding yeast. Science 1998, 282:699-705.
[http://cmgm.stanford.edu/pbrown/sporulation]

Global patterns of gene expression during a developmental program, sporu-
lation in yeast, are presented. Temporal expression patterns suggest poten-
tial functions of many uncharacterized genes.

20. Jelinsky S, Samson L: Global response of Saccharomyces 
• cerevisiae to an alkylating agent. Proc Natl Acad Sci USA 1999,

96:1486-1491. 
This work demonstrates the ability of global expression profiling to dramati-
cally increase information about specific cellular processes. It also includes
a study correlating Northern analyses with microarray results. 

21. Holstege F, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green
MR, Golub TR, Lander ES, Young RA: Dissecting the regulatory
circuitry of a eukaryotic genome. Cell 1998, 95:717-728.

22. Lelivelt M, Culberston M: Yeast upf proteins required for RNA
surveillance affect global expression of the yeast transcriptome.
Mol Cell Biol 1999, 19:6710-6719.

23. Madhani HD, Galitski T, Lander ES, Fink GR: Effectors of a
developmental mitogen-activated protein kinase cascade
revealed by expression signatires of signaling mutants. Proc Natl
Acad Sci USA 1998, 96:12530-12535.

24. Marton MJ, DeRisi JL, Bennet HA, Iyer VR, Meyer MR, Roberts CJ,
Stoughton R, Burchard, J, Slade D, Dai H et al.: Drug validation and
identification of secondary drug target effects using DNA
microarrays. Nat Med 1998, 4:1293-1301.

25. Gray NS, Wodicka L, Thunnissen AWH, Norman TC, Kwon S,
Espinoza FH, Morgan DO, Barnes G, LeClerc S, Meijer L et al.:
Exploiting chemical libraries, structure, and genomics in the
search for kinase inhibitors. Science 1998, 281:533-538.

26. Lockhart DJ: Mutant yeast on drugs. Nat Med 1998, 4:1235-1236.

27. Ferea TL, Botstein D, Brown PO, Rosenzweig RF: Systematic
changes in gene expression patterns following adaptive
evolution. Proc Natl Acad Sci USA 1999, 96:9721-9726.

28. Gingeras T, Rosenow C: High density oligonucleotide arrays and
their use in the study of microbial genomes: opportunities unique
to prokaryotic genomes. ASM News 2000, in press.

29. De Saizieu A, Certa U, Warrington J, Gray C, Keck W, Mous J:
Bacterial transcript imaging by hybridization of total RNA to
oligonucleotide arrays. Nat Biotechnol 1998, 16:45-48.

30. Tao H, Bausch C, Richmond C, Blattner FR, Conway T: Functional 
• genomics: expression analysis of Escherichia coli growing on

minimal and rich media. J Bacteriol 1999, 181:6425-6440.
Comparison of gene expression profiles using total RNA from E. coli cells
grown in rich and minimal medium. A comprehensive analysis of differential-
ly expressed genes is presented.

31. Wilson M, DeRisi J, Kristensen H-H, Imboden P, Rane S, Brown PO, 
•• Schoolnik GK: Exploring drug-induced alterations in gene

expression in Mycobacterium tuberculosis by microarray
hybridization. Proc Natl Acad Sci USA 1999, 96:12833-12838. 

PCR-based microarrays of the entire M. tuberculosis genome were used to
study gene induction after treatment of the bacterial cell with the drug isoni-
azid. Several induced genes were linked to proteins that are relevant to the
drug’s mode of action.

32. Zhu H, Cong JP, Mamtora G, Gingeras T, Shenk T: Cellular gene 
• expression altered by human cytomegalovirus: global monitoring

with oligonucleotide arrays. Proc Natl Acad Sci 1998,
95:14470-14475.

Comprehensive analysis of human genes whose mRNA levels change after
infection of primary fibroblast cells with the human cytomegalovirus.

33. Chambers J, Angulo A, Amaratunga D, Guo H, Jiang Y, Wan JS,
Bittner A, Frueh K, Jackson MR, Peterson PA et al.: DNA microarrays
of the complex human cytomegalovirus genome: profiling kinetic
class with drug sensitivity of viral gene expression. J Virol 1999,
73:5757-5766.

34. Bassett DE, Eisen B, Boguski MS: Gene expression informatics-it’s
all in your mine. Suppl Nat Genet 1999, 21:51-55.

35. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and
display of genome-wide expression patterns. Proc Natl Acad Sci
USA 1998, 95:14863-14868.

36. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E,
Lander ES, Golub TR: Interpreting patterns of gene expression
with self-organizing maps: methods and application to
hematopoietic differentiation. Proc Natl Acad Sci USA 1999,
96:2907-2912.

37. Törönen P, Kolehmainen M, Wong G, Castrën E: Analysis of gene
expression data using self-organizing maps. FEBS Lett 1999,
451:142-146.

38. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM:
Systematic determination of genetic network architecture. Nat
Genet 1999, 22:281-285.

39. Claverie JM: Computational methods for the identification of 
•• differential and coordinated gene expression. Hum Mol Genet

1999, 8:1821-1832.
Review of computational methods used to identify genes that are differen-
tially expressed between normal and pathological samples or coordinately
expressed across experimental conditions or through time. Also addresses
the clustering of genes with coherent expression features, such as member-
ship in biological pathways.

40. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ: 
• Broad patterns of gene expression revealed by clustering

analysis of tumor and normal colon tissues probed by
oligonucleotide arrays. Proc Natl Acad Sci USA 1999,
96:6745-6750.

Two-way clustering was applied to microarray data from 40 tumor and 22
normal colon tissue samples. The clustering program separated cancerous
from noncancerous tissue even when expression of individual genes varied
only slightly between the tissues.

41. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, 
•• Mesirov-JP, Coller H, Loh ML, Downing JR, Caligiuri MA et al.:

Molecular classification of cancer: class discovery and class
prediction by gene expression monitoring. Science 1999,
286:531-537.

This paper describes how two types of leukemia can be distinguished
through use of an automatically derived predictor.

Monitoring gene expression using DNA microarrays Harrington, Rosenow and Retief    291


