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Several computational methods based on microarray data are currently used to study genome-wide transcrip-

tional regulation. Few studies, however, address the combinatorial nature of transcription, a well-established phe-

nomenon in eukaryotes. Here we describe a new approach using microarray data to uncover novel functional

motif combinations in the promoters of Saccharomyces cerevisiae. In addition to identifying novel motif combina-

tions that affect expression patterns during the cell cycle, sporulation and various stress responses, we observed

regulatory cross-talk among several of these processes. We have also generated motif-association maps that pro-

vide a global view of transcription networks. The maps are highly connected, suggesting that a small number of

transcription factors are responsible for a complex set of expression patterns in diverse conditions. This approach

may be useful for modeling transcriptional regulatory networks in more complex eukaryotes.

1Department of Genetics and Lipper Center for Computational Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. Correspondence
should be addressed to G.M.C. (e-mail: church@salt2.med.harvard.edu).

Introduction
The regulation of gene expression in eukaryotes is highly complex
and often occurs through the coordinated action of multiple tran-
scription factors. Examples of this combinatorial transcriptional
control have been described for several organisms1–6. Combinator-
ial regulation of transcription has several advantages, including the
control of gene expression in response to a variety of signals from
the environment and the use of a limited number of transcription
factors to create many combinations of regulators whose activities
are modulated by diverse sets of conditions.

The customary approach to analyzing microarray data7–11 does
not explicitly address the combinatorial nature of transcriptional
regulation. Here, however, we have performed an extensive study to
identify synergistic motif combinations that control gene expres-
sion patterns in S. cerevisiae (Fig. 1a). We analyzed microarray
expression data to screen for statistically significant motif combina-
tions. This combinatorial analysis was incorporated into a new ana-
lytic model that explores the effect on gene expression patterns of
adding or subtracting motifs from particular motif combinations.
We identified several novel motif combinations that seem to be
directly responsible for particular expression patterns during the
cell cycle, sporulation and various stress-response conditions. We
have also generated motif synergy maps that display the motif asso-
ciations discovered in this study. These maps provide a global view
of the connections between regulators of the transcriptional net-
works within the cell in different conditions.

Results
Identification and analysis of motif combinations
To identify motif combinations that control gene expression
patterns, we first established a database of known and putative
regulatory motifs and used ScanACE12 to identify all the genes in

the S. cerevisiae genome containing each motif in their promot-
ers (Fig. 1a). We then used the expression profiles of genes
whose promoters contained the particular motif or motif com-
bination to evaluate the effect of each motif on gene expression.
For each motif or combination, we calculated the expression
coherence score, a measure of the overall similarity of the
expression profiles of all the genes containing that motif, in sev-
eral different conditions, including different stages of the cell
cycle13, sporulation14, diauxic shift15, heat and cold shock16, and
treatment with DTT16, pheromone17 and DNA-damaging
agents18 (see Web Table A for a list of expression coherence
scores). We used a working statistical definition of motif syn-
ergy, distinct from its use in the experimental context, to identify
functional motif combinations. A pair of motifs was considered
‘synergistic’ if the expression coherence score of genes contain-
ing both motifs in their promoters was significantly greater than
that of genes containing either motif alone (Fig 1b). We com-
puted motif synergy scores for all pairs of motif combinations in
the current database (Web Table B).

We identified several experimentally established transcrip-
tional motif associations in our analysis. Sites for Mcm1 and SFF,
known to control transcription of some G2-specific genes19,20,
are synergistic in the cell-cycle data set at the appropriate phase of
the cell cycle (time points 7 and 14; Fig. 1b). In addition, the
Mcm1-Ste12 (ref. 21), Bas1-Gcn4 (ref. 22) and Mig1-CSRE (ref.
23) motif combinations, known to interact functionally at some
promoters, are predicted here to be synergistic. We also observed,
by studying the effect of DNA-damaging agents, that the sites for
the factors Abf1 and Rpn4 are synergistic. Both factors have pre-
viously been independently implicated in regulating transcrip-
tion during nucleotide excision repair18,24; however, there have
been no reports of a functional interaction between them.
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Compare the effect of
individual and combinations

of motifs on expression
by Combinogram analysis

Build a database of known and putative promoter motifs

For all motif pairs, identify all the genes containing
the pair in their promoters

Calculate the expression coherence score for
each gene set

Identify significantly synergistic combinations

Build motif synergy
maps with synergistic
motif pairs to visualize

transcriptional networks

Finally, the fact that Rap1 synergizes with different partners in
several conditions is consistent with its broad role in controlling
transcription in S. cerevisiae25.

Among the new synergistic motif combinations identified in
our analysis is a combination composed of the mRRPE (also
known as M3a10) motif12, derived from the MIPS rRNA-process-
ing functional category using the motif-finding algorithm Ali-
gnACE12,26, and PAC (also known as M3b10), a motif found
upstream of many DNA polymerase A and C genes (Table 1)27.
Both mRRPE and PAC have been identified from the same expres-
sion cluster in analyses of cell-cycle10 and stress response28,29

microarray data sets, but these studies did not capture the impres-
sive synergy between the two motifs. Our results indicate the
power of combinatorial analyses of microarray data compared
with the current approach of clustering expression data and then
applying motif-finding algorithms9–11. As the two motifs also co-
occur significantly in the genome, particularly upstream of genes
involved in rRNA transcription and processing (Y.P., P.S. and
G.M.C., unpublished data), this combination may be biologically
significant and worthy of further experimental verification.

To assess the effect of motif combinations on expression coher-
ence, our analysis simply requires that the combinations co-occur
in the same promoter; however, it does not address certain other
parameters, such as orientation or position of motifs within pro-
moters, that often influence motif function30. We further analyzed
synergistic motif pairs for preferences in relative locations within
promoters. We tested the hypothesis that, for each motif pair, one
motif tends to be located closer to the translational Start site than
the other. Detailed analysis of the highly synergistic motif pair of
PAC and mRRPE (Fig. 2a, left) shows that mRRPE is found pref-
erentially closer to the translational Start site to a statistically sig-
nificant extent (P=0.002). Among the 79 promoters containing a
single copy of PAC and mRRPE, mRRPE is closer to the Start site

in 51 cases. By contrast, for a random, typical motif pair, desig-
nated M1 and M2, we found no such significant bias (P=0.11) in
26 cases studied (Fig. 2a, right): M1 is closer to Start in 14 pro-
moters and M2 in 12. We extended this analysis to each of the 115
synergistic pairs identified in the study. Synergistic pairs have a
significant tendency to display an orientation bias when com-
pared with a random control set of motif pairs (P=10–14; Fig. 2b).
For instance, we found a significant (P<0.05) orientation bias in
approximately 18% of the synergistic pairs, compared with only
approximately 6% of the pairs in the control random sample.
These results indicate that motif orientation is important for the
function of synergistic motif combinations.

Fig. 1 a, Strategy used to discover and analyze synergistic motif combinations. b, Expression profiles of genes containing the motifs for Mcm1 and/or SFF. In each
panel, each grey line represents the normalized expression profiles of an individual gene defined by the indicated motif(s) during the cell cycle. The average
expression profile of all the genes displayed in the panel is shown in red. The expression coherence score (EC) for each group of genes is also shown.

Table 1 • Selected synergistic motif pairs

Motif 1 Motif 2 Conditions

Mcm1 SFF cc
Mcm1 Ste12 spo
Gcn4 Bas1 hs
Mig1 CSRE hs
Rap1 mRPE6 cc spo hs dd
Rap1 CCA spo hs dd
ECB SFF cc
MCB SCB pr
PAC mRRPE cc spo hs dd
PAC mRRSE3 hs
SCB SFF spo
Mcm1 mDNAMetE4 cc
mRRPE mRRSE3 ds
STRE mPROT18 hs
Rpn4 Abf1 dd

cc, cell cycle; spo, sporulation; ds, diauxic shift; hs, heat shock; pr, pheromone
response; dd, DNA-damaging agents.
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A global map of yeast combinatorial control
To discern higher-order interactions between transcription regula-
tors of different cellular processes, we generated a motif synergy
map depicting the functional associations between motifs discov-
ered in this study. The map shows a fairly high degree of connectiv-
ity, with all the nodes in one connected cluster (Fig. 3). This is a
consequence of the numerous synergistic interactions formed by a
few motifs for factors such as Rap1, Abf1, SFF and CCA. This sug-
gests that a small number of transcription factors associating in var-
ious combinations may be sufficient to control a wide variety of
expression patterns in S. cerevisiae under different conditions.

In addition to indicating particular regulatory interactions in a
specific condition, the motif synergy maps also display global
connections between different experimental conditions. As seen
in the map (Fig. 3), some motifs are striking in their ability to
synergize with different motifs in many conditions. The Rap1
motif, for example, forms synergistic combinations with differ-
ent motifs in almost every condition studied here. This finding
shows that a single motif can affect transcription in multiple con-
ditions by participating in different combinations in each condi-
tion, and is consistent with the broad role of Rap1 in controlling
transcription in S. cerevisiae25.

Another interesting property of the motif synergy map is that
motifs controlling similar cellular pathways seem to cluster together;
that is, they form synergistic combinations with each other (Fig. 3).
For example, several cell cycle–specific motifs, including sites for
Mcm1, SFF, Swi5 and the ECB box, synergize with one another. Sim-
ilarly, several motifs that regulate the transcription of amino
acid–biosynthetic genes such as Bas1, Gcn4 and Lys14 form func-
tional associations. These results suggest that our approach uncovers
motif combinations that are likely to interact functionally with each
other by controlling transcription of similar pathways.

Exploring the causal relationship between motifs and
expression patterns
In addition to identifying motif associations, we also tried to deter-
mine the influence of each motif in a combination on the observed
expression pattern. For example, we asked whether motif combina-
tions that have some motifs in common give similar expression pat-
terns, which would suggest that the shared motifs may be
important for determining the expression profile. In addition, for a
particular synergistic motif pair in a given experimental condition,
it was unclear whether one motif is more critical in determining the
pattern of expression or if both motifs in the combination con-
tribute equally. One way to investigate the impact of individual
motifs is to add or remove motifs from a given combination and
assess the effect of each set of motifs on expression coherence. This
may predict whether each motif is necessary and/or sufficient for
the particular expression pattern and indicate causal links between
the motifs and the expression profiles.

To simultaneously assess expression coherence and the similarity
between expression patterns of different motif combinations, we
developed the Combinogram workbench, an integrated set of com-
putational tools for the analysis and visualization of relationships
between regulatory motifs and expression profiles (Figs. 4 and 5).
The analysis is initiated with a collection of n (usually 5–20) motifs
whose effect on gene expression in a particular expression condi-
tion needs to be characterized. Each gene in the genome is assigned
a binary signature ‘a string of 1s and 0s’ indicating the presence or
absence of each of the n motifs in its promoter. All the genes in the
genome with the same motif signature are combined into a gene set
defined by a motif combination (GMC). A GMC for a particular
motif combination is thus defined by all the genes that have the
combination but not any of the other motifs in the set. To explore
the effects of individual motifs, we generated all possible GMCs in
the motif set and calculated the expression coherence score for each
GMC. In addition, we determined the average expression profiles of
all the GMCs, grouped them in clusters based on the similarity
between the profiles, and depicted them in a dendrogram.

Cell cycle and sporulation combinatorial controls
Our analysis of synergistic motif combinations shows several inter-
esting associations between cell cycle motifs as well as regulatory
cross-talk between the two processes of cell cycle and sporulation—
for example, the synergy observed for the SCB-SFF motif pair dur-
ing sporulation (Table 1). We therefore carried out a Combinogram
analysis of the known cell-cycle and sporulation motifs to identify
their roles in both the cell cycle (Fig. 4a) and sporulation (Fig. 4b).
Expression profiles of GMCs containing the MCB motif, which is
known to be important for transcription during G1 (ref. 31), are
very similar and cluster together in the dendrogram section of the
cell-cycle Combinogram (Fig. 4a). The Combinogram predicts that
the MCB motif is both necessary and sufficient to invoke the G1-
specific expression pattern: MCB is the only motif common to all
the GMCs in the G1 expression cluster, and the GMC containing
MCB alone is a member of the cluster.

Fig. 2 The effect of relative motif orientation on motif synergy. a, Orientation
analysis of the most synergistic motif pair, PAC and mRRPE (left), and of two ran-
domly chosen motifs designated M1 and M2 (corresponding to motifs number
352 and 169 on the motif list at http://genetics.med.harvard.edu/∼ tpilpel/Mot-
Comb.html; right). Shown are the distribution of differences between the loca-
tions (relative to the translational Start site) of PAC and mRRPE in promoters
containing single copies of each motif (left) and the distribution of differences
between the locations of M1 and M2 in promoters containing single copies of
each motif (right). In the PAC-mRRPE pair, mRRPE is found preferentially closer to
Start, whereas in the random pair, a more balanced distribution is seen. We calcu-
lated an orientation bias statistic using a cumulative binomial probability for the
probability of obtaining more or the same extent of bias by chance, assuming no 
a priori bias; the probability for the observed orientation bias is 0.002 for mRRPE
and PAC and 0.14 for M1 and M2. b, Histograms of the logarithm of the orienta-
tion bias scores for all 115 synergistic motif pairs (thick line) and for a random con-
trol set (thin line) of 115 motif pairs. The P value for the hypothesis that the two
histograms are identical is 10–14 according to the Wilcoxon rank sum test.
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Fig. 3 Global motif synergy
map. The nodes in these
graphs represent known or
putative motifs and are indi-
cated either by a small black
circle or by an oval contain-
ing the name of the motif.
Names of putative motifs
begin with the letter “m”
and indicate the MIPS func-
tional category from which
they were derived: mRPE,
ribosomal protein element;
mRRPE, rRNA processing ele-
ment; mRRSE, rRNA synthesis
element. The symbol ‘ follow-
ing a motif name indicates a
variant of the motif found in
the literature that was gener-
ated by running AlignACE on
the promoters of genes
known to be regulated by
the motif. Motifs bound by a
known protein are indicated
by the name of the protein in
capitals. Lines connect motif
pairs that synergized signifi-
cantly in at least one of the
seven expression experi-
ments; line colors indicate
the expression condition(s) in
which the motif pair had a
significantly high synergy
score (upper right). Some motif names are marked according to the function of the genes they regulate or the MIPS functional category from which they were
derived: bold face, ribosomal proteins; italics, rRNA transcription/processing/synthesis; underlined, cell cycle; shadow, relating to amino-acid biosynthesis.

Combinograms also show the influence of other motifs on the
expression pattern characteristic of a particular motif. For exam-
ple, although most MCB-containing GMCs display a primarily
G1-specific profile, they also contain some genes with G2-specific
expression (data not shown). However, the MCB-SFF´ (´ indicates
a variant of the motif found in the literature; see Fig. 3) GMC is
the most coherent combination in the cell-cycle Combinogram
(Fig. 4a), with almost all the genes peaking only in G1. In
genome-wide chromatin immunoprecipitations (ChIp) carried
out with the factors Mbp1 and Forkhead1, members of complexes
that bind the MCB motif and the SFF motif respectively, a signifi-
cantly large number of promoters were precipitated by both fac-
tors (I. Simon and R. Young, personal communication). This is
consistent with the functional interaction between the MCB and
SFF motifs predicted by the present study.

GMCs containing the SFF´ motif with other motif partners are
grouped away from the G1-specific expression cluster in the
Combinogram and have primarily a G2-specific pattern (Fig. 4a)
that is consistent with previous experimental evidence for the
regulatory role of the SFF complex19,20. The MCB-SFF’ GMC is
part of the MCB expression cluster, indicating that the presence
of the SFF motif does not change the G1-specific expression pat-
tern defined by the MCB motif. These results suggest that SFF
acts as an activator during G1, which is consistent with observa-
tions that the SFF complex is constitutively bound to its sites
throughout the cell cycle20. If the expression profiles observed in
the GMCs defined by MCB (G1-specific) or SFF-containing
motifs (G2-specific) are characteristic of these motifs, the G1-
specific expression profile observed in the MCB-SFF GMC sug-
gests that the MCB motif is more dominant than the SFF motif in
determining this expression pattern. Alternatively, it is possible
that SFF acts as a repressor of genes containing the MCB-SFF
combination during G2 (ref. 20).

In the sporulation data set, the MSE, a motif bound by the
sporulation factor Ndt80, seems to be a major determinant of
expression patterns. Combinogram analyses also reveal the

unexpected influence of cell cycle motifs in controlling tran-
scription during sporulation (Fig. 4b). The expression profiles
of three out of the four MSE-containing GMCs are tightly clus-
tered, with profiles characteristic of mid-sporulation. This
cluster includes the GMC containing MSE alone, indicating
that the MSE site is sufficient for establishing the particular
expression pattern. However, the same cluster includes a GMC
defined by the SCB and SFF´ sites (Fig. 4b), suggesting that the
factors that bind the SCB and SFF sites can serve as alternative
regulators of the mid-sporulation response.

The sporulation Combinogram also displays the effect of
two other cell cycle motifs, MCB and SCB, on expression dur-
ing sporulation. The MCB alone and the MCB-SCB GMCs
cluster together with highly similar expression patterns that
peak at 2 h into sporulation (Fig. 4b). We used the motif-find-
ing algorithm AlignACE12 to analyze the promoters of all the
genes with expression profiles similar to genes in the MCB-
SCB GMC (data not shown). We found that MCB is the only
significant motif, which suggests that no other motif con-
tributes as much as MCB to this expression pattern. (Our crite-
ria for significance are that both the MAP and –log (group
specificity score) exceed 10; ref. 12.) Although we predict that
the MCB motif is both necessary and sufficient for this pattern,
the presence of the SCB motif seems to substantially improve
the expression coherence of the gene set. Our results are con-
sistent with two recent studies that also suggest that these
motifs control gene expression during sporulation32,33 and
with previous evidence of a role for Swi6, a member of tran-
scription complexes that bind MCB and SCB, during meiotic
recombination34.

Stress response regulators
Combinograms can also be used to explore the regulation of
gene expression in experimental conditions where there is lim-
ited knowledge about relevant regulatory motifs. We used Com-
binograms to analyze motifs involved in synergistic
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combinations in two different stress response conditions, heat
shock16 and treatment with DNA-damaging agents18 (Fig. 5). In
both cases, GMCs with similar motif composition are clustered
in the dendrogram. For example, both Combinograms show
three distinct clusters (Fig. 5) consisting of GMCs defined (i) by
ribosomal protein motifs (Rap1 and mRPE6), (ii) by rRNA tran-
scription and processing motifs (PAC, mRRPE, mRRSE3 and
mRRSE10), and (iii) by environment-specific elements such as
STRE and HSE during heat-shock (Fig. 5a) or by the motifs for
the proteasome regulator Rpn4 and the activator Abf1 during
DNA damage (Fig. 5b). The correspondence between expression
clusters and the motif compositions of the GMCs indicates that
under these conditions, the expression patterns observed result
from the presence of these motif combinations.

The expression patterns of the ribosomal protein and the
rRNA regulatory motif clusters are similar, and both are nega-
tively correlated to that of the environment-specific cluster
(Fig. 5a). It is possible that the corresponding protein profiles,
those of ribosomal and heat-shock or proteasome proteins,
respectively, are also negatively correlated. This pattern may be
expected, given the opposing cellular roles of these complexes
in protein synthesis and proteolytic degradation, respectively.
The dichotomy in the expression response between ribosomal
motifs and motifs specific to environmental condition seems
to be a broad phenomenon and has been observed in several
microarray experiments (http://genetics.med.harvard.edu/
∼ tpilpel/MotComb.html). Similar observations have been
made by analyzing gene expression clusters in other stress-
inducing microarray studies28.

The Combinograms also demonstrate the importance of a new
motif, mRPE6. This motif is derived from the MIPS ribosomal
protein category12 and shows a high degree of expression coher-
ence in combination with the Rap1 site in both the heat-shock
(Fig. 5a) and DNA damage (Fig. 5b) data sets. In addition, it syn-
ergizes with Rap1 in multiple conditions, suggesting a potential
new motif partner for modulating Rap1 function.

Discussion
The recent accumulation of microarray data has led to the devel-
opment of several computational approaches for studying
genome-wide transcriptional regulation. However, very few
studies have addressed the combinatorial nature of eukaryotic
transcription35. A recent study used S. cerevisiae microarray data
to fit a linear model that describes the additive effect of oligomers
on the expression levels of individual genes at particular time
points33. The study did not, however, implement a necessary cri-
terion for establishing synergy between motifs: comparing the
expression of genes containing each motif combination with
gene sets containing each of the individual motifs alone. While
this criterion was not implemented in the previous study, it was
instrumental in our discovery of statistically significant motif
combinations.  Therefore, other methods for detecting motif
combinations33,35 may uncover different types of associations
than those described here.

Because our analysis provided specific examples of synergistic
motif combinations, it enabled us to generate a motif synergy
map that provides a global view of the functional interactions
between regulators of transcription in gene networks in S. cere-
visiae. The map contains a few ‘hubs,’ or nodes with many inter-
actions, indicating that certain factors may act as global
‘facilitator proteins’ that assist their gene-specific partners in
their function, possibly by modifying chromatin structure or tar-
geting their partners to the promoters. Such factors may activate
or repress transcription depending on the partner motif or factor
and the condition, enabling a transcriptional response that inte-
grates multiple environmental signals and pathways.

The process of deriving all the predictions in this study, including
methodological and threshold choices, was unbiased by previous
experimentally or computationally derived knowledge. The predic-
tions that are confirmed by the literature may therefore be consid-
ered true positive controls. It is clear, however, that these hypotheses
merit further confirmation by additional experiments; we hope
that our predictions will aid future experiments. In addition, our

Fig. 4 Combinograms of cell-
cycle- and sporulation-
related motifs. a, Cell-cycle13

data set. b, Sporulation14

data set. The middle section
of the Combinogram shows
the motif composition of
each GMC. Each vertical col-
umn represents a single
GMC. A colored square indi-
cates that the particular
motif is present in the pro-
moters of all the genes in
that GMC. A white square
indicates that none of the
genes in the GMC contain
the particular motif. Motifs
known to control transcrip-
tion during the cell cycle or
sporulation are green or
magenta, respectively. Only
GMCs that passed the thresh-
olds imposed for expression
coherence score (EC=0.075)
and the number of genes in
the GMC (at least 10 genes)
are shown, to balance the
sensitivity and specificity of
the Combinogram displays.
The top section of the graph
shows the dendrogram
analysis that assesses the similarity in expression profiles of each GMC using Pearson correlation coefficients between the average expression profile of the
genes in the GMC as a measure of distance. G1 and G2, and 2 h and 5 h, indicate GMC clusters that predominantly peak in the G1 and G2 phases of the cell
cycle and at 2 h and 5 h into sporulation, respectively. The bottom section of each graph shows the expression coherence scores for each GMC. GMCs con-
taining the cell cycle motifs Swi5 and ECB were included in the analysis but did not pass the thresholds.
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use of motifs derived independently of the MIPS categories, such as
motifs assembled from the literature, in many of the synergistic
pairs controls for a potential circularity resulting from the fact that
genes within the same MIPS category are often co-expressed10.

The approach used in this study has several useful outcomes.
First, the criterion for finding synergistic motif combinations
should ensure a lower rate of false positives in defining the genes
controlled by each motif. Second, the motif synergy map
described here may be important for annotating the regulatory
role of new motifs that co-cluster with known motifs, as motifs
that affect the same cellular processes often synergize together.
Third, the use of Combinograms to determine the role of each
motif in a combination strengthens the link between the motif
composition of promoters and the particular expression pattern.
This kind of approach may be applied to predict the expression
profiles of genes for which microarray data is unavailable, as is
true for significant portions of the human or mouse genomes,
based on similarities in promoter-motif composition. Finally, we
anticipate that such combinatorial approaches will be critical for
dissecting the complex architecture of transcriptional networks
in more complex eukaryotes, in anticipation of an avalanche of
microarray data from the human and mouse genomes.

Methods
A data set of known and putative yeast regulatory motifs. We used 356 DNA
motifs, including 37 known motifs. We derived 329 motif matrices by apply-
ing AlignACE12 to the upstream regions of genes in the MIPS36 functional
categories. The 329 motifs represent a nonredundant set selected from an ini-
tial set of 819 motifs12 using hierarchical clustering and the requirement that
the CompareACE score12 for similarity between pairs of motifs not exceed 0.5.
We chose the motif with the highest group specificity score12 in each cluster.
This set includes 25 of the known motifs. We collected the remaining known
motifs from the literature and the SCPD database37.

For each motif, we calculated the mean (M) and standard deviation (SD) of
the ScanACE scores12 of the genes used to derive the motif. We assigned motifs
to the 4,483 upstream regions (URs) in the S. cerevisiae genome by including
only those URs that score higher than M−2×SD. If more than 300 URs con-
tained the motif, we chose only the 300 top-scoring URs. Although the choice
of these particular settings is somewhat arbitrary, a detailed parameter land-
scape analysis indicates that choice of other threshold values from a wide range
of potential settings would have had relatively little effect on the final results
(http://genetics.med.harvard.edu/∼ tpilpel/MotComb.html). Experimental
results from genome-wide DNA-protein interaction studies32,38 may help to
refine these settings in the future.

Expression coherence score. Expression data was downloaded from the
expression database ExpressDB39. Using a given set of K genes containing
a particular motif or motif combination in their promoters and an
expression data set, we calculated the Euclidean distances between the
mean and variance-normalized expression profiles of each of the
P=0.5*K*(K–1) pairs of genes. In the case of divergently transcribed
genes, both transcripts were considered. The expression coherence score,
EC, associated with a motif/motif combination, is defined as p/P, where p
is the number of gene pairs whose Euclidean distance is smaller than a
threshold distance (D). We determined the value of D as follows: we ran-
domly sampled 100 genes from the entire genome and calculated the
Euclidean distances between their normalized expression profiles for all
possible 100×99×0.5 gene pairs for a given expression data set, and then
defined D as the lowest value in the fifth percentile of the distribution of
these distances. Alternative thresholds give rise to qualitatively similar
results (http://genetics.med.harvard.edu/∼ tpilpel/MotComb.html).

Synergy of motif combinations. We calculated the expression coherence
(ECL) score for genes containing L motifs in their promoters, including
only combinations that occur in at least 10 genes. We calculated similar EC
scores for the GMCs containing all possible subsets of L–1 motifs (exclud-
ing one motif in each iteration) and determined the maximum score (Max-
ECL–1). We used a statistical definition of motif synergy to characterize the
combinations: a motif combination was ‘synergistic’ if ECL was significant-
ly higher than MaxECL–1. For example, motifs A and B (L=2) are ‘synergis-
tic’ if genes containing motifs A and B have a significantly higher EC score
than the GMC containing motif A but not motif B and the GMC contain-
ing motif B but not motif A (Fig. 1b).

We tested the null hypothesis that ECL is less than or equal to MaxECL–1.
We used a Monte Carlo procedure for two motifs A and B, where it is
assumed that the gene set containing motif A has a higher EC score than
that containing motif B. S(AB) and S(A/B) are the sizes of the gene sets
containing motifs A and B, and A but not B, respectively, and EC(AB) and
EC(A/B) are their respective EC scores. To test the corresponding null
hypothesis that EC(AB) is less than or equal to EC(A/B), we randomly par-
titioned the gene set containing motif A (with or without motif B) into two
sets (s1 and s2) of sizes S(AB) and S(A/B), respectively; we then calculated
the EC score of each partition (EC(s1) and EC(s2)). We repeated the ran-
dom partitioning procedure T times and obtained a distribution for EC
score differences (EC(s1)−EC(s2)). If the observed difference, EC(AB)−
EC(A/B), was at the top of the random distribution, we estimated an upper
bound of 1/T for the P value of the null hypothesis. In the examination of
multiple motif pairs, the evaluation of the significance of the best pair may
be overestimated. To avoid this, we set the value of T to the number of
motif pairs examined (the number of hypotheses generated). This proce-
dure can be extended to L>2 motifs.

Fig. 5 Combinograms of the
heat-shock16 and the nucleotide
excision repair18 experiments.
a, Heat-shock data set.
b, Nucleotide excision repair
data set. The names of putative
motifs start with the letter “m”
and indicate the MIPS func-
tional category from which
they were derived: mRPE, ribo-
somal protein element; mRRPE,
rRNA processing element;
mRRSE, rRNA synthesis ele-
ment; mLFTE, lipid and fatty
acid transport element; mPRO-
TEOL, proteolysis. Motifs in the
middle section of the diagram
are colored according to the
function of the genes they reg-
ulate or the MIPS functional
category from which they were
derived: red, ribosomal pro-
teins; blue, rRNA transcription
motifs; orange, stress related
motifs; turquoise, energy pro-
duction-related; black, miscel-
laneous functions.

a b
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Combinogram analyses. We started the analysis with a set of N motifs from
synergistic motif combinations in a given expression experiment. We assigned
each gene in the genome a binary signature of length N, placing a 1 at the ith

position if the gene contained motif i in its promoter and a 0 otherwise. We
thus generated 2N gene sets, termed ‘genes defined by motif combinations’
(GMCs), where all the genes in a given GMC shared the same motif signature.
We determined the expression coherence score and the averaged expression
profile of all the genes in each GMC. We calculated the Pearson correlation
coefficients between averaged expression profiles for all pairs of GMCs; this
was input in the dendrogram analyses generated with the Cluster Analysis
module in Matlab 5 (Mathworks) using the average-linkage option.

Motif synergy maps. We generated motif interaction graphs using the
Brown University GeomNet server (http://loki.cs.brown.edu:8081/graph-
server/gds/gds-home.shtml). We used the GEM algorithm option, because
this seems to be superior to others in terms of graph clarity. The input for
the server is a set of synergistic motif pairs; only motif pairs in which at least
one of the two members is a known motif are analyzed. The output is a set of
node locations (motifs) in a plane. A pair of nodes is connected by an edge if
the synergy score of the two motifs is lower than a P value threshold, Pt,
which was set at 1/Pairs, where Pairs (the number of motif pairs tested)
equals (total number of motifs)×(number of known regulatory motifs)/2.
We used a Matlab script to render the graph, followed by manual manipula-
tion in Canvas 3.5 to minimize the number of lines crossing each other.

Note: Supplementary information is available on the Nature Genetics
web site (http://genetics.nature.com/supplementary_info/).
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