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The enormous amount of data produced by microarray experiments can be unwieldy. A given

series of microarray experiments produces observations of differential expression for
thousands of genes across multiple conditions. These large data sets can be summarized with
principal components analysis (PCA), a statistical technique that allows the key variables (or
combinations of variables) in a multidimensional data set to be identified. Principa
components analysis determines those key variables in the data that best explain the
differencesin the observations. Here we show the utility of applying PCA to expression data,

where the experimental conditions are the variables, and the gene expression measurements

are the observations. Thus, each component defines a linear combination of the experimental
conditions that can be used to distinguish genes parsimoniously. Examination of the
components also provides insight into what underlying factors are actually being measured in

the experiment. We applied PCA to the publicly released yeast sporulation data set (Chu et al.

1998). In that work, 7 different measurements of gene expression were made over time. PCA

on the time-points suggests that much of the observed variability in the experiment can be
summarized in just 2 components—i.e. 2 variables capture most of the information. These
underlying factors appear to represent (1) overall induction level and (2) change in induction
level over time. A visualization of our results is made available
(http://www.smi.stanford.edu/projects/helix/PCArray)

1 Introduction

The study of gene expression has been greatly facilitated by the application of the
recently developed DNA microarray technology (Schena et a. 1995). DNA
microarrays measure the expression of thousands of genes simultaneously. The
anticipated flood of biological information produced by these experiments will open
new doors into genetic analysis (Lander 1999). Expression patterns have already
been used for a variety of inference tasks. For example, microarray data has been
used to identify gene clusters based on co-expression (Eisen et al. 1998, Michagels et
a. 1998), define metrics that measure a gene's involvement in a particular cellular
event or process (Spellman et al. 1998), predict regulatory elements (Brazma et a.
1998), and reverse engineer transcription networks (D’'Haeseleer et al. 1999, Liang

" These authors contributed equally to this communication.
¥ To whom correspondence should be addressed.



et a. 1998). The success of these methods relies on the integrity of the expression
data. Both experimental noise and non-independence among a set of experimental
conditions may lead the inferential process astray. Considering or eliminating either
of these complicating factorsis non-trivial and can be over-looked in data analysis.

DNA microarrays consist of single-stranded DNA fragments affixed to a solid
support (Chee et a. 1996, Chen et al. 1998, Duggan et al. 1999, Schena et al. 1995).

Each spot on the microarray consists of a population of identical DNA fragments

that represent one particular gene. To measure expression, the total RNA of acell is
harvested and labeled with fluorescent nucleotide tags during reverse transcription

to make fluorescent probes. Commonly, two cell populations are used—cells under
control and experimental conditions. The probes are then placed on the chip and
permitted to hybridize with the target fragments on the corresponding spot. The
intensity of the spot is approximately proportional to the probe and hence mRNA
concentration. In a typical experiment, two colors (red and green) are used to
measure expression of the experimental population relative to the control. Equal
total MRNA probe concentrations are used to query the microarray and intensity
ratios between the colors are calculated and reported as data (Schena et al. 1995).

Principal Components Analysis (PCA) is an exploratory multivariate statistical
technique, originally introduced by Pearson (Basilevsky 1994, Everitt & Dunn
1992, Pearson 1901). Givem observations om variables, the goal of PCA is to
reduce the dimensionality of the data matrix by findingew variables, whereis
less tham. Termed principal components, theseew variables together account
for as much of the variance in the origimavariables as possible while remaining
mutually uncorrelated and orthogonal. The goal is to reduce dimensionality while
filtering noise in the process, making the data more accessible for visualization and
analysis. Because each principal component is a linear combination of the original
variables, it is often possible to ascribe meaning to what the components represent.
For example, if we timed several people running in the 50m, 200m, 800m, and
3200m races, the component accounting for the most variability might represent
overall fitness and the component accounting for the next most variability might
distinguish the sprinters from the long-distance runners. Principal components
analysis has been used in a wide range of biomedical problems. Two recent
examples include unsupervised signal detection in functional magnetic resonance
images (Lai & Fang 1999) and visualization of the genomic similarity among
several different cell populations (Franklin et al. 1999).

We demonstrate the utility of PCA to the analysis of gene expression data by
application to a published microarray experiment (Chu et. al. 1998). This
experiment includes expression measurements on sporulating yeast cells taken at
different time points. Analysis of this data by the same group identified 7 clusters
for classifying key genes. These clusters were defined by the approximate times
during which members are up-regulated.



2 Methods

Given a matrix of expression data, A, where each row corresponds to a different

gene and each column corresponds to one of several different conditions to which

the cells were exposed. The a, entry of the matrix contains the i gene’s relative
expression ratio with respect to a control population under conditiom an effort

to equalize the influence of induction and repression on subsequent analysis, we
applied the natural log transform to all ratios (Eisen et al. 1998). Up-regulated
genes have a positive log expression ratio, while down-regulated genes have a
negative log expression ratio.

We chose not to normalize the conditions to norm 0, variance 1 as
recommended by certain text books of multivariate statistics (Everitt & Dunn 1992).
This normalization is recommended when attempting PCA on measurements that
may not be comparable to each other; range magnitudes may artificially weight
components. Since the log ratios included in the analysis are comparable, no further
preprocessing was necessary.

To compute the principal components, the eigenvalues and their
corresponding eigenvectors are calculated from rtke covariance matrix of
conditions. Each eigenvector defines a principal component. A component can be
viewed as a weighted sum of the conditions, where the coefficients of the
eigenvectors are the weights. Each of theomponents can be calculated for a
given gene :

n
ay = Z & Vy
=

Wherevy, is thet" coefficient for thej" principal componenta, is the expression
measurement for gerieunder thet” condition.A’ is the data in terms of principal
components. Since V is an orthonormal matrix, A’ is a rotation of the data from the
original space of observations to a new space with principal component axes.

The variance accounted for by each of the components is its associated
eigenvalue; it is the variance of a component over al genes. Consequently, the
eigenvectors with large eigenvalues are the ones that contain most of the
information; eigenvectors with small eigenvalues are uninformative.

Determining r, the true dimensionality of the data, and eliminating noisy
components is often ad hocand many heuristics exist. Eliminating low variance
components, while reducing noise, also discards some valuable information. We
chose to use one criterion, in common use in multivariate statistics, that discards all



components accounting for less than (70/n)% of the overall variability. Inspection
of the coefficients of the remaining components can suggest what the component is
measuring. However, such methods contain a certain amount of inherent
subjectivity (Everitt & Dunn 1992).

The Matlab™ software package (The MathWorks, Inc., Natick, MA) was used
to conduct most of our calculations.

3 Results

The data for this analysis was obtained from a publicly accessible web site’. The
data contains expression ratios for 6118 known or predicted genes from
Saccharomyces cerevisiae. The data was collected by plating cells on nitrogen
deficient medium and measuring expression for each gene at 7 different time points
(Ohrs, 0.5hr, 2hrs, 5hrs, 7hrs, 9hrs, 11.5hrs) during sporulation. Thus, the matrix to
be analyzedhas 6118 rows of genes and 7 columns of condtions corresponding to
each of the measured time points. Table 1 reports the mean, median, and variance
of each time point from the sporulation data. The means and medians are slightly
negative but quite close to zero. Also note the relatively low variance of the t=0
time point; this is reassuring since the initial population should be similar to the
background population.
<< TABLE 1>><<TABLE 2>>

Our analysis of the sporulation data series indicates that we can summarize the
data with just two variables. Table 2 contains al 7 principal components and their
corresponding eigenvalues. Figure 1isaplot of the eigenvalues of the components.
Two eigenvalues lie above the 10% (70/7) cutoff, suggesting two dimensions for the
sporulation data. The first two principal components account for over 90% of the
total variability; including the third component accounts for almost 95%. We
include discussion of the third component for the sake of completeness. The
meaning of these components can be distilled from their respective coefficients.

<< FIGURE 1>>

The first component represents a weighted average and distinguishes genes by
their average overall expression. Ignoring the t=0 coefficient (it has negligible
magnitude), it can be seen in Figure 2A that the remaining coefficients are positive
(see aso Table 2). The coefficients are proportional to the variance of the time
points they are associated with (correlation = 0.97). The first component is an
average expression weighted by the information content (i.e. variance) of a
particular experiment. Genes with highly positive values along this component are
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up-regulated during sporulation, whereas genes with highly negative values are
down-regulated.
<< FIGURE 2 >>

The second component represents change in expression over time; it
distinguishes genes by their first derivatives. In Figure 2B the coefficients linearly
increase with time from negative to positive values. Again, the exception to the rule
is the low variance t=0 observation which has a negligible coefficient. Consider a
gene i that is repressed (negative log expression ratio) in the early time points and
highly induced (positive log expression ratio) in the fina time points. The
coefficient multiplied by the log expression score will be positive for each time
point. Genei's value along the second componeit, is large and positive since
every product in the sum is positive. Alternatively the second component for a gene
that isinduced early and repressed later will be large and negative. The expression
scores are multiplied with coefficients of the opposite sign, yielding a large negative
score. This component is positive for genes whose relative expression increases
through time, and negative for those whose relative expression decreases; it
measures positive trend in expression.

The third component measures concavity—notice the parabolic nature of the
coefficients in Figure 2C (again ignore the negligible t=0 coefficient). Consider a
genei that is expressed at background level in the early and middle time points, but
induced in the final time points—it has an expression profile that is concave up.
Since the only non-zero expression levels occur at the final time points, only the
later negative coefficients contribute to the safm, Consequently this gene will
have a negative third component. Alternatively consider a gene with a similar
profile, but that is expressed in the middle time points also (concave down); in this
case the middle time points with positive coefficients increase the score aong this
component. The score of the second gene will be less negative.

In a sense, these vectors are decomposing a gene’s expression pattern into
Taylor series terms. The first component is the constant term, the second is the first
derivative, and the third is the second derivative.

The first two components account for over 90% of the variance allowing most
of the information to be visualized in two dimensions. All yeast genes are plotted in
Figure 3 against the first two principal components; an ellipse enclosing 95% of the
genes is drawn to distinguish between high and low variance genes. The genes
appear to be distributed in a unimodal bivariate distribution. The data has been
made available as a VMRL source at
http://www.smi.stanford.edu/projects/helix/PCArray; the user can quickly navigate
through two or three dimensional component space. Each data point is linked to its
corresponding entry in the Saccharomyces Genome Database (Cherry et al. 1998).

<< FIGURE 3>>



4 Discussion

Our results with the sporulation data indicate that PCA can be successful in finding
a reduced set of variables that are useful for understanding the experiment. Since
the data analyzed is atime series, it is reassuring that PCA identifies basic temporal
patterns, such as magnitude, change, and the concavity of overall expression as the
important features that characterize genes. Application of PCA to the publicly
available cell division cycle data’ reveals that PCA can aso identify periodic
patterns in time series data (Spellman et al. 1998). For example, this data reveals a
110 min period for the cdcl5 synchronized experiment, consistent with the cell
cycle duration.

The transcription factor NDT80 is key to the induction of many genes
expressed in the middle of the sporulation process (Xu et al. 1995). The original
dataset also includes measurements of gene expression for a NDT80 knockout
microarray experiment and an ectopic NDT80 over-expression experiment.
Including these extra experiments in the analysis results in coefficients for the first
two components that are consistent with our understanding of the phenotype of
these cells. In particular, the NDT80 knockout experiment traps cells in an early
stage of sporulation; correspondingly, the coefficients in the first two components
are most similar to the T=2 hour coefficients from the sporulation time series. In
addition, the NDT80 over-expression data yields coefficients most similar to the
T=11 hour coefficients. Since NDT80 is a sporulation promoting factor, the effects
of over-expression may cause a phenotype that mimics alate time point.

Reduction of dimensionality in the sporulation data aids in data visualization;
we can immediately see the unimodal quality of the sporulation data (Figure 3).

The unimodal distribution of expression in the most informative two dimensions
suggests the genes do not fall into well-defined clusters.

In the initial presentation of the data the investigators used clustering
techniques to identify several gene classes relevant to sporulation: “metabolic”,
“early 1", “early 11", “middle early”, “middle”, “middle late”, and “late” (Chu et al.
1998). For each class a canonical expression profile was calculated from a set of
sample genes. These classes are plotted in Figure 4A; each ellipse in the plot
represents a class. The location and dimensions of each ellipse was calculated from
the average and standard deviation of the sample genes of the class. They are drawn
so that approximately 68% (+/- 1SD in both dimensions) of the genes in the class
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are enclosed; in Figure 4B they are drawn to enclose 95% (+/- 1.96SD) of the genes
in the class.
<< FIGURE 4 >>

An approximate understanding of a class’s expression dynamic can be obtained
quickly by looking at its location in space. For example, genes occupying the lower
right quadrant (high PCAL, low PCA2) are up-regulated early but return to
background later in sporulation. These genes have expression levels that decrease
over time but maintain a high overall expression level relative to the control.
Examples of these genes are ZIP1 (synaptonemal complex formation), IME2
(meiosis regulator), and HOP1 (homologous chromosome pairing), classified as
“early I” or "metabolic” genes.

Exploring other quadrants can rapidly identify genes of potential interest.
Genes with low overall expression levels that decrease over the course of
sporulation can be found in the lower left quadrant. Many genes involved in
metabolic or catabolic processes such as ERG6 (ergosterol synthesis), FBP1
(gluconeogenesis), and SAM2 (methionine biosynthesis) are found in this quadrant.
Genes in the upper left are initially repressed and return to normal. Many of these
genes are involved in protein synthesis. Examples include ISF1 (RNA splicing),
BAP3 (valine transporter), and DBP3 (RNA helicase). The early repression may
correspond with the cells’ initial cessation of protein synthesis and growth; the
renewed expression may function to pack the maturing spores with translation
machinery (Chu et al. 1998). The reader is encouraged to further explore the genes
in our visualization of the data.

Principal components analysis is often used as a preprocessing step to
clustering (Everitt 1993). However, our work suggests that clustering genes with
certain expression data sets may be inappropriate. In particular in Figure 4A the
genes are not located in clusters - rather they are spread throughout this space.
Focusing on the upper right quadrant in Figure 4B, it can be seen that the clusters
presented in the original publication have a considerable amount of overlap. For
unimodal or other smoothly varying distributions, distinctions drawn by clustering
methodologies maybe more confusing than helpful. In particular, these clusters
highlight the potential biases used in analyzing clusters using traditional cognitive
categories. This observation corroborates the investigators’ finding that the clusters
are somewhat arbitrary; many genes were found to have high correlation with
multiple cluster representatives (Chu et al. 1998). Perhaps it is more useful to ask
what a particular gene’s neighbors are rather than asking which cluster it is in.

Principal components analysisis arobust statistical technique that can be useful
in analysis of microarray data. Techniques for dimensional reduction, such as PCA,
offer promise for overcoming the difficulties in conceptualizing microarray data.
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Table 1. Summary of the experimental data collected by Chu and his colleagues (1998).

contains average relative expression ratios after application of anatura log transform.

The table

Time T=0 T=5 T=2 T=5 T=7 T=9 T=11
point

Median -0.122 | -0.182 | -0.104 | -0.166 | -0.095 | -0.104 | -0.131
Mean -0.119 | -0.214 | -0.096 | -0.119 | -0.007 | -0.032 | -0.025
Variance | 0.029 | 0.369 | 0.269 0.428 0.737 0.552 0.596

Table 2. Results of PCA on the sporulation time series data. The values in the columns are coefficients
of the principal components that are related to each of the experimentd time points. The eigenvalues
express the variance of a principal component over all genes. Principal component 1 and 2 contain over
90% of the total variancein the data

Projection Principal Components

On 1 2 3 4 5 6 7
condition

T=0 -0.0072 | -0.0116 | -0.0631 | -0.2166 | 0.0764 | -0.7433 0.625
T=5 0.2076 | -0.7524 | -0.5373 | 0.2606 0.1545 | -0.0683 | -0.0756
T=2 0.2358 | -0.4925 | 0.3296 | -0.5935 | -0.453 0.1713 0.0803
T=5 0.3975 | -0.1156 | 0.5612 -0.002 0.5919 | -0.2532 | -0.3151
T=7 0.554 0.0862 0.1869 0.4959 | -0.1112 | 0.2889 0.5559
T=9 0.4671 0.2517 -0.153 0.1169 | -0.5413 | -0.4488 | -0.4324
T=1 0.4671 0.3273 | -0.4748 | -0.5229 | 0.3307 0.254 0.044
Eigenvalue 2.2928 0.401 0.1322 0.0594 0.0406 0.0288 0.025
% variance 76.9 % 135% 4.4% 2.0% 14% 1.0% 0.8%
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Figure 1. Plot of eigenvalues of the principal components. Most of the variance in the sporulation data
set is contained in the first two principal components.
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Figure 2. Plots of the coefficients of the first three principal components. Each coefficient indicates the
weight of a particular experiment in the principal component. The first principa component has al
positive coefficients, indicating a weighted average. The second principal component has negative values
for the early time points and positive values for the latter time points, indicating a measure of change in
expression. The third coefficient captures information about the concavity in the expression pattern over
time.
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Figure 3. The rotated and dimensionally reduced expression data. All yeast genes are plotted
on to the first and second principal components. The first principal component is a measure of
total average expression, the second is a measure of increasing expression with respect to time.
The ellipse at the center contains 95% of the genes.
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Figure 4. A. All genes plotted with respect to first and second principal components. Ellipses represent
clusters identified in the original publication of the sporulation data. Ellipses are drawn to include 685
of the genes in the cluster. B. Ellipses are labelled using labels reported by the original investigators
{Chu et al. 1998) and drawn to include 95% of genes in the cluster.



