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The marine unicellular cyanobacterium Prochlorococcus is the smallest known
oxygen-evolving autotrophl. It numerically dominates the phytoplankton in the
tropical and sub-tropical oceans™, and is responsible for a significant fraction of
global photosynthesis. Here we compare the genomes of two Prochlorococcus
strains that span the largest evolutionary distance within the Prochlorococcus
lineage4 and have different minimum, maximum and optimal light intensities for
growth®. The high light adapted ecotype has the smallest genome (1,657,990 bp,
1716 genes) of any known oxygenic phototroph; the genome of its low light
counterpart is significantly larger, at 2,410,873 bp (2275 genes). The comparative
architectures of these two strains reveal dynamic genomes which are constantly
changing in response to myriad selection pressures. Although the two strains have
1350 genes in common, a significant number are not shared, which have either
been differentially retained from the common ancestor, or acquired through
duplication or lateral transfer. Some of these genes play obvious roles in
determining the relative fitness of the ecotypes in response to key environmental

variables, and hence in regulating their distribution and abundance in the oceans.

As an oxyphototroph, Prochlorococcus requires only light, CO; and inorganic
nutrients, thus the opportunities for extensive niche differentiation are not immediately
obvious — particularly in view of the high mixing potential in the marine environment
(Fig. 1a). Yet co-occurring Prochlorococcus cells that differ in their rDNA sequence by
less than 3% have different optimal light intensities for growth®, pigment contents’,
light harvesting efficiencies’, sensitivities to trace metals®, nitrogen utilization abilities’
and cyanophage speciﬁcitiesm (Fig. 1b,c). These “ecotypes”™— i.e. distinct genetic
lineages with ecologically relevant physiological differences — would be lumped as a
single species on the basis of their rDNA similarity'', yet they have strikingly different
distributions within a stratified oceanic water column, with high light adapted ecotypes

most abundant in surface waters, and their low light adapted counterparts dominating



deeper waters'? (Fig. 1a). The detailed comparison between the genomes of two
Prochlorococcus ecotypes we report here reveals many of the genetic foundations for
the observed differences in their physiologies and vertical niche partitioning and
together with the genome of their close relative Synechococcus', help elucidate the key
factors that regulate species diversity, and the resulting biogeochemical cycles, in

today’s oceans.

The genome of Prochlorococcus MEDA4, a high light adapted strain, is 1,657,990
bp. This is the smallest of any oxygenic phototroph — significantly smaller than that of
the low light adapted strain, MIT 9313 (2,410,873 bp) (Table 1). The genomes of
MED4 and MIT9313 consist of a single circular chromosome (Supp. Fig. 1), and
encode 1716 and 2275 genes respectively, roughly 65% of which can be assigned a
functional category (Supp. Fig. 2). Both genomes have undergone numerous large and
small-scale rearrangements but they retain conservation of local gene order (Fig. 2).
Break points between the orthologous gene clusters are commonly flanked by tRNAs
suggesting that these genes serve as loci for rearrangements caused by internal

homologous recombination or phage integration events.

The strains have 1352 genes in common, all but 38 of which are also shared with
Synechococcus WH 8102". Many of the 38 “Prochlorococcus-specific” genes encode
proteins involved in the atypical light harvesting complex of Prochlorococcus, which
contains divinyl chlorophylls @ and b rather than the phycobilisomes that characterize
most cyanobacteria. They include genes encoding the chlorophyll a/b-binding proteins
(pch)™, a putative chlorophyll @ oxygenase which could synthesize (divinyl)
chlorophyll b from (divinyl) chlorophyll a'°, and a lycopene epsilon cyclase involved in

the synthesis of alpha carotene'®. This remarkably low number of “genera defining”



genes illustrates how differences in a few gene families can translate into significant

niche differentiation among closely related microbes.

MEDA4 has 364 genes without an ortholog in MIT 9313, while MIT 9313 has 923
that are not present in MED4. These “strain-specific” genes, which are dispersed
throughout the chromosome (Fig 2), clearly hold clues about the relative fitness of the
two strains under different environmental conditions. Almost half of the 923 MIT 9313-
specific genes are in fact present in Synechococcus WH 8102, suggesting they have
been lost from MED4 in the course of genome reduction. Lateral transfer events,

perhaps mediated by phage'® may also be a source of some of the strain-specific genes

(Supp. Fig. 3, 4, 5, 6).

Gene loss has played a major role in defining the Prochlorococcus photosynthetic
apparatus. MED4 and MIT 9313 are missing many of the genes encoding
phycobilisome structural proteins and enzymes involved in phycobilin biosynthesis'.
Although some of these genes remain, and are functional'’, others appear to be evolving
rapidly within the Prochlorococcus lineage'®. Selective genome reduction can also be
seen in the photosynthetic reaction center of Prochlorococcus. Light acclimation in
cyanobacteria often involves differential expression of multiple, but distinct, copies of
genes encoding Photosystem Il D1 and D2 reaction center proteins (psbA and psbD
respectively)'’. However, MED4 has a single psb4 gene, MIT 9313 has two that encode
identical PSII D1 polypeptides, and both possess only one psbD gene, suggesting a
diminished ability to photoacclimate. MED4 has also lost the gene encoding
cytochrome ¢550 (psb V), which plays a crucial role in the oxygen evolving complex in

Synechocystis PCC 6803,



There are several differences between the genomes that help account for the
different light optima of the two strains. For example, the smaller MED4 genome has
more than twice as many genes (22 vs 9) encoding putative High Light Inducible
Proteins (HLIPs), which appear to have arisen at least in part via duplication events'.
MEDA4 also possesses a photolyase gene that has been lost in MIT9313, likely because
there is little selective pressure to retain UV damage repair in low light habitats.
Regarding differences in light harvesting efficiencies, it is noteworthy that MED4
contains only a single gene encoding the chlorophyll a/b-binding antenna protein Pcb,
while MIT 9313 possesses two copies. The second type has been found exclusively in
low light adapted strains®', and may form an antenna capable of binding more

chlorophyll pigments.

Both strains have a low proportion of genes involved in regulatory functions.
Compared to the freshwater cyanobacterium Thermosynechococcus elongatus (genome
size < 2.6 Mbp)*, MIT 9313 has fewer sigma factors, transcriptional regulators and two
component sensor-kinase systems, and MED4 is even more reduced (Supp. Table 1).
The circadian clock genes provide an example of this reduction as both genomes lack
several components (pex, kaid) found in the model Synechococcus PCC 7942%.
However genes for the core clock proteins (kaiB, kaiC) remain in both genomes, and
Prochlorococcus cell division is tightly synchronized to the diel light-dark cycle®.
Thus, loss of some circadian components may imply an alternate signalling pathway for

circadian control.

Gene loss may also play a role in the lower % G+C content of MED4 (30.8 %)
compared to that of MIT9313 (50.74%) which is more typical of marine Synechococcus.

MEDA4 lacks genes for several DNA repair pathways including recombinational repair



(recJ, recQ), and damage reversal (mutT). Particularly, the loss of the base excision
repair gene mutY, which removes adenosines incorrectly paired with oxidatively
damaged guanine residues may imply an increased rate of G+C --> T*A transversions™ .
The tRNA complement of MED4 is largely identical to MIT 9313 and not optimized for

a low % G+C genome suggesting it is not evolving as fast as codon usage.

Analysis of the nitrogen acquisition capabilities of the two strains points to a
sequential decay in the capacity to utilize nitrate and nitrite during the evolution of the
Prochlorococcus lineage (Fig. 3a). In Synechococcus WH 8102 — representing the
presumed ancestral state — many nitrogen acquisition and assimilation genes are
grouped together (Fig. 3a). MIT 9313 has lost a 25-gene cluster which includes genes
encoding the nitrate/nitrite transporter and nitrate reductase. The nitrite reductase gene
has been retained in MIT 9313, but it is flanked by a proteobacterial-like nitrite
transporter rather than a typical cyanobacterial nitrate/nitrite permease (Supp. Fig. 4),
suggesting acquisition by lateral gene transfer. An additional deletion event occurred in
MEDA4, in which the nitrite reductase gene was also lost (Fig. 3a). As a result of these
serial deletion events MIT 9313 cannot utilize nitrate, and MED4 cannot utilize nitrate
or nitrite’. Thus each Prochlorococcus ecotype uses the N-species that is most prevalent
at the light levels to which they are best adapted: ammonium in the surface waters, and
nitrite at depth (Fig. 1a). Synechococcus — which is the only one of the three that has
nitrate reductase — is able to bloom when nitrate is upwelled (Fig 1a), as occurs in the

spring in the N. Atlantic® and the N. Red Sea®.

The two Prochlorococcus strains are also less versatile in their organic N
utilization capabilities than Synechococcus WH 8102"°. MED4 contains the genes

necessary for utilization of urea, cyanate and oligopeptides, but no monomeric amino



acid transporters have been identified. In contrast, MIT 9313 contains transporters for
urea, amino acids and oligopeptides but lacks the genes necessary for cyanate utilization
(cyanate transporter and cyanate lyase) (Fig. 3a). As expected, both genomes contain
the high affinity ammonium transporter am¢/ and both lack the nitrogenase genes
essential for nitrogen fixation. Finally, both contain the nitrogen transcriptional
regulator encoded by ntcA and there are numerous genes in both genomes, including
ntcA, amtl, the urea transport and GS/GOGAT genes (glutamine synthetase and
glutamate synthase, both involved in ammonia assimilation), with an upstream NtcA

binding site consensus sequence.

The genomes also have differences in genes involved in phosphorus utilization
that have obvious ecological implications. MED4, but not MIT9313, is capable of
growth on organic P sources (L. R. Moore and S. W. Chisholm, unpublished data), and
organic P can be the prevalent form of P in high light surface waters>’. This difference
may be due to the acquisition of an alkaline phosphatase like gene in MED4 (Supp. Fig.
5). Both genomes contain the high affinity phosphate transport system encoded by pstS
and pstABC™®, but MIT 9313 contains an additional copy of the phosphate binding
component pstS, perhaps reflecting an increased reliance on orthophosphate in deeper
waters. MED4 contains several P related regulatory genes including the phoB, phoR two
component system and the transcriptional activator p#rA. In MIT 9313, however, phoR
is interrupted by 2 frameshifts and p#r4 is further degenerated, suggesting that this strain

has lost the ability to regulate gene expression in response to changing P levels.

Both Prochlorococcus strains have iron-related genes missing in Synechococcus
WH 8102, which may explain its dominance in the iron limited Equatorial Pacific?,

These genes include flavodoxin (isiB) a Fe-free electron transfer protein capable of



replacing ferredoxin, and ferritin (located with the ATPase component of an iron ABC
transporter), an iron binding molecule implicated in iron storage. Additional
characteristics of the iron acquisition system in these genomes include: an Fe-induced
transcriptional regulator (Fur) that represses iron uptake genes; numerous genes with an
upstream putative fur box motif that are candidates for a high affinity iron scavenging

system; and absence of genes involved in Fe:siderophore complexes.

Prochlorococcus does not utilize typical cyanobacterial genes for inorganic
carbon concentration or fixation. Both genomes contain a sodium/bicarbonate symporter
but lack homologs to known families of carbonic anhydrases, suggesting an as yet
unidentified gene is fulfilling this function. One of the two carbonic anhydrases in
Synechococcus WH 8102 was lost in the deletion event that led to the loss of the nitrate
reductase (Fig. 3a); the other is located next to a tRNA and appears to have been lost
during a genome rearrangement event. Like other Prochlorococcus and marine
Synechococcus, MED4 and MIT9313 possess a form IA Rubisco, rather than the typical
cyanobacterial form IB. The Rubisco genes are adjacent to genes encoding structural
carboxysome shell proteins and all have phylogenetic affinity to genes in the gamma-
proteobacterium Acidithiobacillus ferroxidans"®, suggesting lateral transfer of the

extended operon.

Prochlorococcus has been identified in deep sub-oxic zones where it is unlikely
they can sustain themselves by photosynthesis alone”, thus we looked for genomic
evidence of heterotrophic capability. Indeed, the presence of oligopeptide transporters in
both genomes, and the larger proportion of transporters (including some sugar
transporters) in the MIT 9313 strain specific genes (Supp. Fig. 2), suggests the potential

for partial heterotrophy. Neither genome contains known pathways that would allow for



complete heterotrophy, however. They are both missing genes for steps in the
tricarboxylic acid cycle, including 2-oxoglutarate dehydrogenase, succinyl-CoA

synthetase and succinyl-CoA-acetoacetate-CoA transferase.

Cell surface chemistry plays a major role in phage recognition and grazing by
protists and thus is likely to be under intense selective pressure in nature. The two
Prochlorococcus and Synechococcus WH 8102 genomes show evidence of extensive
lateral gene transfer and deletion events of genes involved in lipopolysaccharide and/or
surface polysaccharide biosynthesis, reinforcing the role of predation pressures in the
creation and maintenance of microdiversity. For example, MIT 9313 has a 41.8 kbp
cluster of surface polysaccharide genes (Fig. 3b), that has a lower %G+C composition
(42 %) than the genome as a whole, implicating acquisition by lateral gene transfer.
MEDA4 has acquired a 74.5 kbp cluster consisting of 67 potential surface polysaccharide
genes (Supp. Fig. 6a) and lost another cluster of surface polysaccharide biosynthesis

genes shared between MIT 9313 and Synechococcus WH 8102 (Supp. Fig. 6b).

The approach we have taken in describing these genomes highlights the known
drivers of niche partitioning of these closely related organisms (Fig. 1). Detailed
comparisons with the genomes of additional strains, such as Prochlorococcus SS120™,
will enrich this story, and the analysis of whole genomes from in situ populations will
be necessary to understand the full expanse of genomic diversity in this group. The
genes of unknown function in all of these genomes hold important clues for
undiscovered niche dimensions in the marine pelagic zone. As we unveil their function
we will undoubtedly learn that the suite of selective pressures that shape these
communities is much larger than we have imagined. Finally, it may be useful to view

Prochlorococcus and Synechococcus as important ‘minimal life units’, as the



information in their roughly 2000 genes is sufficient to create globally abundant

biomass from solar energy and inorganic compounds.

Methods

Genome Sequencing and Assembly. DNA was isolated from the clonal, axenic strain
MED4 and the clonal strain MIT 9313 essentially as described previously”. The two
whole genome shotgun libraries were obtained by fragmenting genomic DNA using
mechanical shearing, and cloning 2-3 kb fragments into pUC18. Double-ended plasmid
sequencing reactions were carried out using PE BigDye Terminator chemistry (Perkin
Elmer, Foster City, CA) and sequencing ladders were resolved on PE 377 Automated
DNA Sequencers. The whole genome sequence of Prochlorococcus MED4 was
obtained from 27,065 end sequences (7.3 fold redundancy), while Prochlorococcus
MIT 9313 was sequenced to 6.2X coverage (33,383 end sequences). For
Prochlorococcus MIT 9313, supplemental sequencing (0.05X sequence coverage) of a
pFosl fosmid library was used as a scaffold. Sequence assembly was accomplished
using PHRAP (P. Green, University of Washington). All gaps were closed by primer
walking on gap-spanning library clones or PCR products. The final assembly of
Prochlorococcus MED4 was verified by long range genomic PCR reactions, while the
assembly of Prochlorococcus MIT 9313 was confirmed by comparison to the fosmid
clones, which were fingerprinted with EcoRI.. No plasmids were detected in the course
of genome sequencing and insertion sequences, repeated elements, transposons, and
prophage are notably absent from both genomes. The likely origin of replication in each
genome was identified based on GC skew and base pair 1 was designated adjacent to

the dnaN gene.

Genome Annotation. The combination of three gene modelers, Critica, Glimmer, and

Generation, were used in the determination of potential open reading frames and



checked manually. A revised gene/protein set was searched against the KEGG GENES,
Pfam, PROSITE, PRINTS, ProDom, COGs and CyanoBase databases, in addition to
BLASTP vs. NR. From these results, categorizations were developed using the KEGG
and COGs hierarchies, as modified in CyanoBase. Manual annotation of open reading
frames was done in conjunction with the Synechococcus team. The three way genome
comparison was used to refine predicted start sites, add additional open reading frames

and standardize the annotation across the three genomes.

Genome Comparisons. The comparative genome architecture of MED4 and MIT 9313
was visualized using the Artemis Comparison Tool (ACT)
(http://www.sanger.ac.uk/Software/ACT/). Orthologs were determined by aligning the
predicted coding sequences of each gene with the coding sequences of the other genome
using BLASTP. Genes were considered orthologs if each was the best hit of the other
one and both e-values were less than e, In addition, bidirectional best hits with e-
values less than e and small proteins of conserved function were manually examined

and added to the ortholog lists.

Phylogenetic analyses employed PAUP* and used logdet distances and minimum
evolution as the objective function. The degree of support at each node was evaluated
using 1000 bootstrap resamplings. Ribosomal DNA analyses employed 1160 positions.

The gram positive bacterium Arthrobacter globiformis was used to root the tree.
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Table 1 General Features of the Prochlorococcus genomes

Length (bp)

G+C content (%)

Protein Coding (%)

Protein Coding Genes

With Assigned function

Conserved hypothetical

Hypothetical

Genes with ortholog in

Prochlorococcus MED4

Prochlorococcus MIT 9313

Synechococcus WH8102

Genes without ortholog in

MED4 and WH 8102

MIT 9313 and WH 8102

Transfer RNA

Ribosomal RNA operons

Other Structural RNAs

MED4

1657990

30.8

88

1716

1134

502

80

1352

1394

284

37

MIT 9313

2410873

50.7

82

2275

1366

709

197

1352

1710

527

43



Figure 1 Ecology, physiology and phylogeny of Prochlorococcus ecotypes. a,
Schematic stratified open ocean water column illustrating vertical gradients
allowing niche differentiation. Shading represents degree of light penetration.
Temperature and salinity gradients provide a mixing barrier, isolating the low
nutrient/high light surface layer from the high nutrient/low light deep waters.
Photosynthesis in surface waters is driven primarily by rapidly regenerated
nutrients, punctuated by episodic upwelling. b, Growth rate (solid symbols) and
chlorophyll b/a ratio (open symbols) as a function of growth irradiance for
MED4’ (green) and MIT 9313° (blue). ¢, Relationships between

Prochlorococcus and other cyanobacteria inferred using 16S rDNA.

Figure 2 Global genome alignment as seen from start positions of orthologous
genes. Genes present in one genome but not the other are shown on the axes.
The “broken X” pattern has been noted before for closely related bacterial
genomes, and is likely due to multiple inversions centered around the origin of
replication. Alternating slopes of many adjacent gene clusters indicate multiple

smaller scale inversions have also occurred.

Figure 3 Dynamic architecture of marine cyanobacterial genomes. a, Deletion,
acquisition and rearrangement of nitrogen utilization genes. In MIT 9313, 25
genes including the nitrate/nitrite transporter (nrtP/napA), nitrate reductase
(narB), and carbonic anhydrase have been deleted. The cyanate transporter
and cyanate lyase (cynS) were likely lost after the divergence of MIT 9313 from
the rest of the Prochlorococcus lineage, as MED4 possesses these genes. MIT
9313 has retained nitrite reductase (nirA) and acquired a nitrite transporter. In
MED4 nirA has been lost and the urea transporter (urt cluster) and urease (ure
cluster) genes have been rearranged (dotted line). b, Lateral transfer of genes

involved in LPS biosynthesis including sugar transferases, sugar epimerases,



modifying enzymes, and two pairs of ABC-type transporters. blue, genes in all
three genomes; pink, genes hypothesized to have been laterally transferred;
red, tRNAs; white, other genes. %G+C content in MIT9313 along this segment

is lower (42%) than the whole genome average (horizontal line).
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Supplementary Figure Legends

Supp. Figure 1. Circular representation of the Prochlorococcus genomes. a,
MED4. b, MIT 9313. For both genomes outermost circles (1 and 2) are
predicted protein coding regions on the plus and minus strands, respectively.
Color coding is as in Supplementary Figure 2. The next two circles show genes
not present in the other Prochlorococcus genome on the plus (circle 3) and
minus (circle 4) strands. Circles 5 and 6 show genes on the plus and minus
strands, respectively that contain transmembrane domains. Circle 7 is % G+C
content (deviation from average). Innermost circle (8) represents the GC skew

curve.

Supp. Figure 2. Functional categorization of predicted open reading frames in
the Prochlorococcus genomes, following the classification scheme used by
CyanoBase. a, MED4, entire genome. b, MIT 9313, entire genome. C, Genes
present in both MED4 and MIT 9313. d, Genes in MED4 not present in MIT
9313. e, Genes in MIT 9313 not present in MED4.

Supp. Figure 3. Comparison of Prochlorococcus MED4 and MIT 9313 open
reading frames with those of other complete prokaryotic genomes. The
predicted coding sequences of each gene in both genomes were aligned with
the coding sequences of 90 bacterial genomes using BLASTP. Significant
alignments were defined as having an e-value less than 10°. The bacterial
genomes comprised the 89 completed bacterial genomes available from
ftp.ncbi.nih.gov/genbank/genomes/Bacteria on 30 October 2002 and
Synechococcus WH 81028, a, MED4, entire genome. B, MIT 9313, entire
genome. ¢, MED4 genes present in MIT 9313 ¢, MIT 9313 genes present in



MED4 e, Genes in MED4 not present in MIT 9313 f, Genes in MIT 9313 not
present in MEDA4.

Supp. Figure 4 Alignment of the putative nitrite transporter in Prochlorococcus
MIT9313 (PMT2240) with its most significant matches in the NR database (all
proteobacteria) and with cyanobacterial nitrate/nitrate transporters. The MIT
9313 gene has a formate/nitrite transporter domain (Pfam PF01226) in contrast
to the cyanobacterial nitrate transporters which are permeases of the major
facilitator superfamily (Pfam PF00083). Furthermore, the MIT 9313 gene has no
significant matches (BLASTP evalue < e-2) in the genomes of Prochlorococcus
MED4, Synechococcus WH8102, Synechocystis sp. PCC 6803,
Thermosynechococcus elongatus BP-1, or Anabaena sp. PCC 7120 suggesting
it may have been acquired via lateral gene transfer. Alignment generated using
ClustalW. Shaded residues indicate >50% similarity. Abbreviations and
accession numbers as follows: Rhodopseud., Rhodopseudomonas palustris
(ZP_00012718.1 ); Bradyrhiz., Bradyrhizobium japonicum (NP_769441); Vibrio,
Vibrio vulnificus (NP_762336.1); Nitros., Nitrosomonas europaea (NP_840759);
WH 7803, Synechococcus WH 7803 napA (AAG45172); PCC 7002,
Synechococcus PCC 7002 nrtP (AAD45941); WH9601, Trichodesmium WH
9601 napA (AAF00917); PCC 73102, Nostoc punctiforme PCC 73102
(ZP_00107423).

Supp. Figure 5 Phylogenetic tree showing the relationship of a possible
alkaline phosphatase like gene in Prochlorococcus MED4 (PMMO0708) with the
most significant matches in the NR database, which include several
proteobacterial sequences, and with the atypical alkaline phosphatase of

Synechococcus PCC 7942 and related cyanobacterial genes. Accession



numbers as follows: Brucella melitensis (NP_541633.1), Agrobacterium
tumefaciens str. C58 (NP_531956.1); Sinorhizobium meliloti, (NP_385365.1);
Vibrio vulnificus (NP_762849.1), Streptomyces coelicolor A3(2) (NP_624650.1),
Shewanella oneidensis MR-1 (NP_717877.1) Anabaena PCC 7102
(NP_489331.1), Synechocystis sp. PCC 6803 (NP_440276); Synechococcus
sp. PCC 7942 (A47026).

Supp. Figure 6 Insertions, deletions and rearrangements of genes involved in
lipopolysaccharide biosynthesis (LPS clusters) in MED4. Color coding is as
follows: blue, orthologous genes present in all three genomes; pink, genes
hypothesized to be part of lateral transfer events, many have roles in LPS
biosynthesis; red, tRNAs; green, orthologous genes present in two genomes,
many have roles in LPS biosynthesis; white, other genes. Length in bp
represents the size of the region shown for each genome. a, Insertion of a 74.5
kbp cluster of LPS genes in MED4, roughly between two tRNAs. The 67
potential surface polysaccharide genes in this cluster include sugar
transferases, sugar epimerases, and modifying enzymes such as
aminotransferases, methyltransferases, carbamoyltransferases, and
acetyltransferases. In MIT 9313 and WH 8102 the genes that flank this insertion
are rearranged to other parts of the genome. b, Deletion of LPS biosynthesis
genes in MED4. LPS related genes present in MIT 9313 and WH 8102, several
of which have homologs in the acquired genes shown in part a, have been
deleted. In this region a selenophosphate synthase (selD) and a tRNA
nucleotidyl-transferase in the center of the cluster have been retained
suggesting that they are essential genes and separate deletion events have

occurred on either side of them.



Supp. Table 1 Number of predicted signal transduction and transcription
factors suggests reduced regulatory capacity in Prochlorococcus

Sigma Factors

Two Component systems
Histidine Kinases
Response regulators

Ser/Thr protein Kinases

Transcription Factors
LuxR family
LysR family
CRP family
ArsR family
FUR family
Other

Light sensors/transducers
Cryptochrome

Bacteriophytochrome

Phototropin

MEDA4

5

MIT 9313

8

T. elongatus

8

17
27

11
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