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Biotechnological development pro-
ceeds through the design–build–test
cycle.

Multiplexed technologies have enabled
design and build steps to achieve
throughputs of up to 1 billion variants
per day, far outpacing our capacity to
evaluate designs.

A multiplexed strategy to evaluate
designs could boost the throughput
of biotechnological development by
up to a millionfold.
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Biotechnology is the manufacturing technology of the future. However, engi-
neering biology is complex, and many possible genetic designs must be evalu-
ated to find cells that produce high levels of a desired drug or chemical. Recent
advances have enabled the design and construction of billions of genetic
variants per day, but evaluation capacity remains limited to thousands of
variants per day. Here we evaluate biological engineering through the lens of
the design–build–test cycle framework and highlight the role that multiplexing
has had in transforming the design and build steps. We describe a multiplexed
solution to the ‘test’ step that is enabled by new research. Achieving a multi-
plexed test step will permit a fully multiplexed engineering cycle and boost the
throughput of biobased product development by up to a millionfold.

Biomanufacturing is the Manufacturing of the Future
We are at the brink of a new era in which biology is harnessed to produce valuable new
chemicals and materials. Even today, the US bioeconomy produces revenue upwards of US
$350 billion each year, with more than US$100 billion of that figure coming from bioderived fuels
and chemicals [1,2]. This is only the beginning: with cells as the chemical factories of the future,
industry will no longer be restricted to compounds that are readily produced from petrochemical
building blocks [3]. However, to reach this future, the long and uncertain timelines for biobased
product development must be overcome.

Engineering cells for chemical production is challenging because the complexity of biology often
necessitates that many designs be attempted before an optimal combination of genetic
elements is discovered. The engineering process in which these designs are evaluated and
iterated on is the design–build–test cycle (Figure 1 and Box 1). The rate of product development
is directly related to the throughput of the design cycle, with higher throughputs resulting in
reduced development times. Over the past few years, a convergence of technologies has
enabled the simultaneous construction of billions of cellular variants. Each of these cellular
variants tests a unique hypothesis regarding the combination of genetics elements that would
result in the optimal production of a target compound. While the throughput of the design and
build steps of the cycle have advanced astronomically, our ability to evaluate those designs is
typically of the order of hundreds or thousands of samples per day [4] (Figure 2). As a result, the vast
majority of designs go unevaluated. The impact of further advances in the design and construction
of genetic variants will continue to be diminished while the evaluation bottleneck persists.

Recent advances in high-throughput evaluation of metabolic phenotypes have put a generaliz-
able method for achieving evaluation rates of up to 1 billion cells per day within reach, providing a
millionfold increase in design cycle throughput [5,6] (Figure 3). Such a dramatic leap in engi-
neering capacity is accomplished by using genetically encoded biosensors (see Glossary) that
enable cells to monitor their own success in producing a target compound [6,7]. Depending on
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Glossary
Biosensors: genetically encoded
devices that monitor the intracellular
concentration of a specific
compound. Biosensors produce
fluorescence or another readout
proportional to the concentration of
that compound within the cell.
Demultiplexing: refers to the
process of separating a mixture of
elements into physically separate
locations. This is necessary when
shifting from a multiplexed process to
a singleplex process.
Directed evolution: shifts a
population of cells from one genetic
state to a more desirable genetic
state through a series of selections or
screens performed on successive
generations. Each round of a
directed-evolution experiment
involves subjecting a population to
genetic diversification followed by
enrichment for desired mutations.
Fluorescence-activated cell
sorting (FACS): a high-throughput
method for screening cells based on
fluorescence. Thousands of cells per
second pass through a flow cell and
are retained or discarded based on
their fluorescence at a certain
excitation and emission wavelength.
Forward engineering: in biology,
forward engineering refers to the
process of designing biological
systems or parts such that they
accomplish high-level design goals
when implemented. Forward
engineering relies on accurate models
describing how DNA sequence is
transduced to phenotype. This level
of knowledge is often lacking,
necessitating an iterative engineering
process.
Multiplex: in biology, a multiplexed
process operates on many distinct
elements (e.g., cells, DNA molecules,
metabolites) that coexist in space
and time. Multiplexing enables a
single process to work on millions of
elements with the same effort that
would be required to perform the
process on a single element.
Screen: in metabolic engineering, a
screen is a method for identifying
highly productive cells. Cells are
evaluated one by one to determine
which is most productive. Less
productive cells are discarded.
Evaluation methods are numerous
and diverse.
Selection: in metabolic engineering,
a selection is a method for identifying
highly productive cells. Cells are
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Figure 1. The Design–Build–Test Cycle for Biological Engineering. The genes necessary for chemical production
are initially placed within an organism that has not been optimized for chemical production. This microbe typically exhibits
low or no productivity. The first pass through the design step of the cycle may involve varying the levels of gene expression or
exploration of mutations in the enzyme active sites. These designs are implemented through DNA synthesis and sub-
sequent genome engineering during the build step. In the test step, the newly constructed organisms are evaluated for their
ability to produce the desired compound. The most productive cells are retained and used as a starting point for the next
round of design. The cycle is iterated until an organism is found that meets the stated productivity requirements.
the biosensor implementation, the most productive cells either fluoresce more brightly or
produce higher levels of an antibiotic-resistance gene product that allows them to outcompete
their neighbors in the presence of the antibiotic.

Achieving multiplexed phenotype evaluation is vital because it is the final element necessary for
unlocking a fully multiplexed design–build–test cycle. Here we evaluate how the design–build–
test cycle has evolved over the past several years and how biological engineers can most
effectively harness multiplexed phenotype evaluation. We also explore how a fully multiplexed
design cycle can shift the mindset of bioengineers such that they can think in terms of whole
design spaces rather than single design instances. We are excited about the next generation of
biological engineering that multiplexed evaluation methods have finally enabled.

Multiplexing Enables Next-Generation Biological Engineering
The rate of biotechnological innovation and product development is dependent on the through-
put of the biological design–build–test cycle. Design cycle throughput is the product of two
components: cycle speed and cycle bandwidth. Cycle speed measures how quickly each
iteration of the design–build–test cycle can be completed. Cycle bandwidth reflects the number
of designs that are evaluated per iteration of the cycle. Throughput is therefore the product of
cycle speed and cycle bandwidth.

While either of the throughput components of the design cycle may be improved to enhance
overall cycle throughput, the most impressive gains are achieved by increasing cycle bandwidth
through multiplexing. The speed of the build and test steps are limited by the rate at which cells
can be grown and manipulated. In contrast to speed, the physical limits on bandwidth are vast
because billions of cells or trillions of DNA molecules fit in a single droplet. If each cell or molecule
contains a unique design, the designs are multiplexed in space. By contrast, parallel
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exposed to an environment where
productive cells have a growth
advantage over less productive cells.
Singleplex: in biology, a singleplex
process operates on elements (e.g.,
one cell, one DNA sequence, a single
chemical) separated by location or
time. Singleplex operations are the
opposite of multiplexed operations.
Also referred to as parallel
operations.

Box 1. The Biological Design–Build–Test Cycle

It is no surprise that engineering biological systems is a challenging process. Product development requires the creation
of a life form that behaves in a predictable and reproducible way, a process in which traditional engineering paradigms
tend to be inadequate. Each component of a biological system interacts with thousands of other components within the
cell. This is in stark contrast to electrical or mechanical engineering, where a given component interacts with just a handful
of adjacent components. The astounding complexity that results from the high connectivity of biological systems is further
exacerbated by poor characterization of components at the individual level. Consequently, finding a solution that
maintains cellular viability while meeting desired design goals requires many iterations of the engineering process.

Each iteration is broken into three steps.

Step 1: Biological Design
Hypotheses about the sequence–phenotype relationship dictate which genetic elements should be modified. Software
tools such as Rosetta and flux balance analysis help guide enzyme design and metabolic network design, respectively.
Uncertainty in the sequence–phenotype relationship results in many possible designs for a single desired outcome.

Step 2: Genetic Construction
DNA that corresponds to each new design is synthesized and installed within the cell. Different DNA-synthesis strategies
are deployed based on the type of genetic element that is being modified. The new genetic material is installed on a
plasmid or the genome itself. The installation process can proceed through patching of old genetic material, complete
overwriting of existing sequence, or addition of entirely new genes.

Step 3: Phenotype Evaluation
The newly constructed organisms are evaluated for their ability to meet design goals. In biomanufacturing applications,
the new cells are assessed by measuring how much of a desired compound they produce. High-performing cells are
selected as the starting point for the next iteration of the design cycle.
experimentation requires the spatial separation of designs. This places a limit on the number of
designs that can be processed due to constraints of space and the logistics of design
manipulation.

An iteration through the design–build–test cycle is used to learn about the system at hand and
provides the basis for subsequent design iterations. The simplest feedback between the test
and design steps occurs as it does in nature: the most successful designs survive to become the
templates for the next iteration of the cycle and the design space converges to a local maximum.
More advanced feedback from the test step to the design step provides an explicit under-
standing of which designs function best. Multiplexed sequencing of each design followed by
sequence comparison between the successful and unsuccessful designs enables the formula-
tion of design rules that more quickly define the design space and inform subsequent engineer-
ing endeavors [8,9]. This is a form of directed evolution in which an engineer monitors the flow
of designs and intervenes as necessary. However, such a process requires the technological
capability to quickly rank and identify the best designs and to build new designs with enough
speed and precision to actuate the knowledge gained. Consequently, the effectiveness of the
design cycle increases substantially when multiplexing is possible.

Every step of the cycle must be multiplexed to achieve a fully multiplexed design cycle because
the throughput of the full design cycle is limited by the throughput of the slowest step. While
innovation in a single step results in higher step throughput, it also changes how adjacent steps
are approached. Widely available gene synthesis is an example of how an innovation in the build
step freed design-step engineers from the constraints of using existing DNA sequences. A more
dramatic leap in how engineers approach biological design will occur once the cycle is multi-
plexed from start to finish.

The Design Step: Towards Forward Engineering in Biology
A perfect design step would obviate the other steps in the design cycle. Some engineering
disciplines have approached this scenario; in civil engineering, for example, it is rare to see a
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Figure 2. Available Technologies and Corresponding Throughput at Each Stage of the Design Cycle. Colored
circles illustrate throughput: test throughput in red, build throughput in green, and design throughput in blue. Design
throughput refers to the universe of potential designs that an engineer may want to explore and is potentially unlimited in
scope. In practice, however, an upper limit on design space complexity is influenced by the number of designs that can be
built and evaluated in the subsequent steps of the cycle. Recent technologies have increased build throughput by several
orders of magnitude. Multiplexed DNA synthesis has opened the door to very large libraries of individually designed
sequences while multiplexed genome engineering has enabled vast numbers of genomic edits to be made rapidly. Test
throughput remains the primary bottleneck in the design cycle. Available technologies require physical separation of each
design, conflicting with the multiplexed technologies of the build step. Protein illustration used under Creative Commons
License with attribution to David S. Goodsell and the RCSB PDB.
bridge constructed repeatedly until it works as desired because the design step is so highly
refined. However, our knowledge of biological design principles is imperfect. For example,
sequence determinants of transcription are not fully characterized, epigenetic regulation remains
fuzzy, codon usage is often cryptic, and the stability of folded protein products is still mysterious.
For these reasons, the accuracy of the biological design step lags behind that of more traditional
engineering disciplines and necessitates continued innovation.
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Figure 3. Multiplexed Phenotype Evaluation Eliminates the Primary Bottleneck of the Biological Design–
Build–Test Cycle. Biosensor-based phenotype evaluation is implemented through screens or selections. Fluorescence-
based screening relies on linking the chemical productivity of a cell to the expression of a fluorescent reporter protein. Cells
that produce more of the product compound fluoresce more brightly and are quickly separated from less productive cells
through flow cytometry at rates of up to 1 million cells per minute. Antibiotic-based selections are enabled by linking the
chemical productivity of a cell to the expression of an antibiotic-resistance gene. Cells that produce more of the product
compound are able to survive when exposed to the antibiotic while less productive cells die. Using selections, billions of cells
can be evaluated simultaneously. Such high throughput in the test step enables a fully multiplexed design cycle and enables
engineers to take on previously insurmountable design challenges.
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The effectiveness of the design step has risen meteorically with DNA sequencing technology. In
the burgeoning era of biotechnology, locating or amplifying a gene was hindered by a lack of
sequence knowledge. This made even simple design endeavors, such as recombinant protein
expression, an arduous task. Once a gene's sequence was known, exploration of new biological
designs was restricted to random walks in adjacent sequence space because hypotheses about
functional regions had yet to be formulated. Later, as the amount of sequenced DNA exploded,
so did the potential for designing novel biological systems. The vast repertoire of sequenced
genomes has enabled the formulation of design rules, in turn enabling engineers to hone in on
the active sites of enzymes, borrow homologous sequences from distant species, and locate
regulatory elements for transcription and translation.

Modern-day design tools build on these sequence–function relationships and enable the
forward engineering of biological systems. Precise prediction of ribosomal binding site
strength and promoter activity is now possible with tools like the Salis RBS calculator [9–
11]. New proteins can be constructed in silico before being implemented in vivo [12]. The
metabolism of entire organisms can be modeled mathematically, revealing which genes should
be turned up or down to accomplish a given metabolic goal [13–15].

While these tools provide guidelines for designing new functionality within organisms, their
design predictions still fall within the ambiguity of biology. Consequently, many designs must be
evaluated before an optimal result is obtained. Take the modification of an enzyme's substrate
specificity as an example. If our design tools allow us to identify an active site of seven amino
acids, that active site would exist in a design space of 1 billion potential active sites. If we know
that those amino acids should be positively charged, our design space would comprise just
2000 possible proteins. But how do engineers construct such a large number of designs?

The Build Step: Billions of Designs per Day
The build step of the design cycle describes the process in which potential designs are
constructed out of DNA and integrated into a cell. The cost of gene synthesis has decreased
to the point where ordering several genes (e.g., GeneArt Strings, IDT gBlocks) is trivial for most
laboratories [16,17]. Combined with technologies that enable seamless plasmid construction (e.
g., Gibson [18] and Golden Gate assemblies [19]) and simple methods for modifying the genome
(lambda red recombineering [20] and multiplexed automated genome engineering [21]), parallel
construction is a robust process. However, achieving a meaningful increase in build bandwidth
by multiplexing with synthesized genes will remain cost prohibitive as long as the construction of
those genes is a parallel process itself. Thus, engineers are limited to either random or site-
directed mutagenesis to achieve multiplexed construction of genetic elements. This has been a
serious constraint for building many designs in a multiplexed manner. Recently, microarray-
based oligonucleotide synthesis has enabled multiplexed construction of precisely designed
sequences of up to 200 base pairs, allowing the evaluation of hundreds of thousands of complex
biological hypotheses simultaneously [8,9,22]. Modification of gene expression in trans provides
additional versatility for the build step. Both small regulatory RNAs [23] and CRISPR interference
[24] can be multiplexed to rapidly fine-tune gene expression. While genome engineering has the
benefit of providing permanent changes to metabolism, multiplexing in trans enables further
leverage of recent advances in multiplexed oligo synthesis. Regardless of the specific method,
the capability to multiplex the build step is transforming how engineers approach the design
cycle: experiments that were previously infeasible are now within reach.

Simultaneous advances in genome engineering have made the construction of billions of
genomic variants a routine process [6,21,25–27]. Multiplexed genome engineering allows
specified or degenerate mutations to be targeted anywhere in the genome [21]. Such facile
genome engineering enables new classes of experiments. As an example, the entire set of
Trends in Biotechnology, March 2016, Vol. 34, No. 3 203



metabolic modifications suggested by in silico analytical techniques such as flux balance
analysis can now be explored simultaneously. When optimizing the production of a target
compound, this type of analysis identifies genes that are important to modulate but does not
accurately specify what their level of expression should be [13]. Multiplexed genome engineering
enables the combinatorial exploration of gene expression levels for each of the genes of interest
[6,21]. If ten genes are targeted with mutations corresponding to ten levels of expression, the
resulting design space comprises 10 billion genomes.

The Test Step: Evaluation Rates Still Lag Behind
Despite the success in multiplexing the design and build steps, evaluating 10 billion designs with
current technology would take decades because the test step of the engineering cycle remains a
parallel process. Biological designs constructed in multiplex must first be demultiplexed before
analysis, negating the value of multiplexed construction in the first place. One reason phenotype
evaluation lacks an adequate multiplexed solution is that analytical methods differ dramatically
for different phenotypes. When cells are engineered to produce fuels or chemicals, design
success is often determined by the amount of compound produced. To measure this concen-
tration using chromatography or mass spectrometry, cells must be separated into individual
designs (the demultiplexing step) and cultured in parallel in small volumes, such as in 96-well
plates. Next, either the supernatant or cell lysates are prepared such that the concentration of
the molecule of interest can be determined [4]. In this workflow, throughput is typically limited to
hundreds or thousands of design evaluations per day [4].

Enabling a Fully Multiplexed Design Cycle
Allowing cells to report their own progress in making a specific chemical enables a multiplexed
solution to the test step. Rather than assaying individual designs, engineers should be able to
define a design goal and immediately isolate cells that meet a specified level of performance. If
cells keep track of their own progress, the time required for separation of productive cells from
unproductive cells is no longer proportional to the number of cells evaluated. Selections are
an example of such a multiplexed evaluation method. In a selection, only cells that have a
certain phenotype survive. This decouples the time required for evaluation from the number of
cells evaluated. However, selections are typically based on an ad hoc link between a
phenotype of interest and a necessary cell function. For instance, selecting for increased
utilization of a new sugar is possible if all other energy sources are withheld, but selecting for
the increased production of a novel chemical is not so simple. A general method for multi-
plexed phenotype evaluation is the last step required for a fully multiplexed design–build–test
cycle.

One such method is based on genetically encoded biosensors. Biosensors provide a general
framework for linking intracellular chemical concentration to cell function and provide a
generalizable method for multiplexing design evaluation in cases of metabolic engineering.
Allosterically regulated transcription factors, riboswitches, domain-inserted proteins, and
ligand-dependent dimerization or stability schemes are all methods of genetically encoding
biosensors. Biosensors based on allosteric transcription factors allow expression of a target
gene when bound by a specific small molecule. Transcription factors cluster into more than 20
major families [28]. Currently, the lacI family contains 29 000 sequenced members, while the
gntR family contains 49 000 members [29]. There are over 200 000 sequences available for
members of the tetR family of transcriptional repressors [28]. These naturally occurring
transcription factors bind to an impressive range of compounds. If a microbe has an incentive
to either consume or avoid a compound, there is likely to be a transcription factor that has
evolved to bind it. Recent advances in protein engineering and directed evolution have
produced designer transcription factors that bind compounds for which natural transcription
factors have yet to be discovered [30,31].
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Outstanding Questions
Efficient engineering relies on modular
systems that can be independently
designed and reused in various appli-
cations. Such a system allows engi-
neers to specialize in the design of
one type of system and collaborate
with other engineers who specialize
in the design of another. Modular engi-
neering also enables efforts expended
for one application to be applied
towards subsequent applications. Is it
possible to advance the biological
design–build–test cycle to the point
where each step of the cycle is inde-
pendent and modular? Will it be possi-
ble to have evolutionary engineers (who
design selections and screens) who
operate independently from metabolic
engineers (who design bioproduction
systems)?

The initial work that goes into develop-
ing the biosensor for a new compound
provides an activation energy that will
deter some engineers from using a
multiplexed approach. What is neces-
sary to reduce the activation energy for
biosensor use? Some ideas include:
laboratories and companies that focus
on custom biosensor development; a
large library of predeveloped biosen-
sors; and clear design rules for biosen-
sor construction and characterization.

A fully multiplexed design–build–test
cycle enables millions of designs to
be evaluated per cycle. Sequencing
the entire design pool at each iteration
provides an unprecedented amount of
data linking phenotypes to DNA
sequence. What kind of data-analysis
pipeline will be required to develop
design rules based on sequence–phe-
notype relationships? How can this
information be used to automatically
inform the next iteration of design?
Biosensors based on allosterically regulated transcription factors enable screens and selec-
tions for a vast repertoire of compounds by providing a transcriptional readout for intracellular
metabolite concentration. When the transcriptional output of the biosensor is an antibiotic-
resistance gene, biosensor activation confers antibiotic resistance. Treating a population of cells
with the appropriate antibiotic allows cells to survive only if they produce the required amount of
product. Alternatively, if the transcriptional readout of the biosensor is a fluorescent protein, cells
with more effective designs will fluoresce more brightly. Fluorescent biosensors enable millions
of cells to be screened per minute with high-throughput methods such as fluorescence-
activated cell sorting (FACS).

Combining multiplexed phenotype evaluation with next-generation sequencing enables a deep
understanding of the design space being explored [8,9]. Sorting cells into bins based on their
fluorescence is a multiplexed method for assigning each cell a rank that is based on the quality of
the design it contains. Deep sequencing of the bin contents provides a list of designs for each
bin. Ranks are assigned to each design based on which bin they were found in. Each iteration of
the design cycle provides millions of design–rank pairs. This wealth of information allows design
rules to be developed much more rapidly than would otherwise be possible.

Concluding Remarks: A New Approach for Metabolic Engineering
Routine incorporation of biosensor-based multiplexing will change how metabolic engineers
approach the design cycle. Engineers will explore complete design spaces overnight and the
design cycle bottleneck will shift to data analysis and experimental design. Several groups have
already adopted biosensor-based multiplexing in metabolic engineering applications. Success
has been demonstrated for biosensors implemented as both selections [5,6,32] and screens
[5,33–36]. See Table 1 for a summary of biosensor-mediated metabolic engineering outcomes.

Simple design rules have been formulated for constructing and deploying metabolite-responsive
biosensors that transform screens and selections from ad hoc solutions to well-characterized
methodologies [6,7]. These design rules make multiplexing simple for other engineers to
implement. Small and large biotechnology firms are beginning to evaluate how these multi-
plexing technologies will fit into their product development pipelines while academic laboratories
are further expanding biosensor-based multiplexing capacity and developing novel applications.
Advances in de novo biosensor construction further expand the range of compounds for which
multiplexed evaluation is possible [37].

An entirely high-throughput design–build–test cycle will allow bioengineers to address design
challenges that were previously out of reach. Applications span agricultural products, drop-in
replacements for fuels and chemicals, novel chemical products, and previously unattainable
Table 1. Examples of Biosensor-Mediated High-Throughput Metabolic Engineering

Molecule Biosensor Mode Titer Fold Improvement Throughput Year Refs

Naringenin Selection 36 109 2014 [6]

Glucarate Selection 22 109 2014 [6]

Lysine Screen 37 108 2013 [38]

Histidine Screen >40 108 2013 [38]

Arginine Screen 87 108 2013 [38]

Triacetate lactone Screen 20 104 2013 [36]

Mevalonate Screen 3.8 105 2011 [30]

Butanol Screen 1.4 103 2010 [4]
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pharmaceuticals. The increase in design cycle throughput that is enabled by multiplexing will
embolden bioengineers to go after lofty targets with immediate and global impact.
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