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Abstract

In this paper, the regulatory interactions between genes
are modeled by a linear genetic network that is esti-
mated from gene expression data. The inference of
such a genetic network is hampered by the dimension-
ality problem. This problem is inherent in all gene ex-
pression data since the number of genes by far exceeds
the number of measured time points. Consequently,
there are in�nitely many solutions that �t the data set
perfectly. In this paper, this problem is tackled by com-
bining genes with similar expression pro�les in a sin-
gle prototypical `gene'. Instead of modeling the genes
individually, the relations between prototypical genes
are modeled. In this way, genes that cannot be distin-
guished based on their expression pro�les are grouped
together and their common control action is modeled
instead. This process reduces the number of signals and
imposes a structure on the model that is supported by
the fact that biological genetic networks are thought to
be redundant and sparsely connected. In essence, the
ambiguity in model solutions is represented explicitly
by providing a generalized model that expresses the ba-
sic regulatory interactions between groups of similarly
expressed genes. The modeling approach is illustrated
on arti�cial as well as real data.

Introduction

The introduction of the micro-array technology has
made it possible to measure the simultaneous expres-
sion of thousands of genes with a single experiment.
Since then, much research has been done on how this
amount of data can be employed to infer the func-
tionality of genes. Such inference is currently mainly
performed by means of clustering (Eisen et al. 1998;
Wessels et al. 1999) and pattern recognition techniques
(Brown et al. 1999). The type of information that is
not considered in these approaches is how genes regu-
late each other. If such relationships are known, more
light can be shed on the functionality of genes. This
might indicate which genes are responsible for a cer-
tain disease or process and can (ultimately) aid in the
design of drugs that can cure a disease with minimal
side-e�ects.

Copyright c 2000, American Association for Arti�cial In-
telligence (www.aaai.org). All rights reserved.

Currently, several di�erent types of models are stud-
ied, like Boolean networks (Liang, Fuhrman, & Somo-
gyi 1998), Bayesian networks (Friedman, Goldszmidt,
& Wyner 1999; Friedman et al. 1999), (Quasi)-
Linear networks (D'Haeseleer et al. 1999), Neural net-
works (Weaver, Workman, & Stormo 1999) and Di�er-
ential Equations (Chen, He, & Church 1999). Boolean
and Bayesian networks need some way to discretize the
continuous measurement values, a process that is sensi-
tive to the quantization scheme and might introduce
artifacts which will make these models less realistic.
More biologically inspired models, like the Mjolsness
Model (E. Mjolsness & Reinitz 1991), contain so many
parameters that there are serious limitations on learn-
ing these parameters from current real data-sets. The
major problem concerning currently available data-sets
is that they generally consist of hundreds to thousands
of genes whose activation levels are measured at no
more than twenty time points. From an information-
theoretic point of view this dimensionality problem will
render any network model inferred from this data virtu-
ally meaningless. We therefore choose an approach that
employs a network model containing as few parameters
as necessary and aim additionally to extract as much
information as possible from ambiguous data. Useful
information can be extracted from the data by incor-
porating sensible constraints on the modeling process
based on available biological information.
In this paper, a linear network is used as a basis to
model the regulating interactions between genes and
the model is learned from measurements of gene ac-
tivity over consecutive time points. The basic linear
model follows the assumption that the activity level1 of
a gene at a certain point in time can be determined by
the weighted sum of the activity levels of all genes at
the previous time-point2.

xj(t) =

NX
i=1

ri;j � xi(t� 1) xj ; ri;j 2 IR (1)

1Throughout the paper we de�ne the activity level of
a gene as the logarithm of the ratio between normal and
sample mRNA level.

2In other words, relationships between genes are assumed
to be stationary.



, where xj(t) represents the activity level of gene j at
time t, ri;j represents how strongly gene i controls gene
j and N is the total number of genes under consider-
ation. Note that the linear model captures negative
and positive regulatory interactions between genes, but
processes such as mRNA degradation are not explicitly
modeled. A more complete modeling approach is cov-
ered in the next section, were the linear model is aug-
mented with appropriate pre-and post-processing steps.
Our main contribution lies in the way the dimension-
ality problem is tackled by employing hierarchical clus-
tering to combine genes with similar expression pro�les.
Genes with similar pro�les introduce ambiguity when
the linear model is learned, because they cannot be dis-
tinguished in terms of the way they control (are being
controlled by) other genes. This approach is also bio-
logically plausible because redundancy in genes implies
input and output sharing among genes involved within
a gene family or pathway (D'Haeseleer, Liang, & Som-
ogyi 2000). This constraint is implemented by forcing
genes in the same cluster to share one set of weights.
Furthermore, the fact that genes are estimated on aver-
age to interact with four to eight other genes (Arnone
& Davidson 1997) warrants the restriction of possible
inputs that is caused by the clustering process.

The Modeling Approach

Our modeling approach is illustrated in Fig. 1 and con-
sist of three major processes, i.e. a combination of pre-
and post-processing, clustering and the linear model.
Pre-processing is used to convert the raw measurements
X into a set of useful signals X0 that reect the im-
portant properties of the original data. Signals that
are not signi�cantly up- or down-regulated are removed
and the remaining signals are normalized. The normal-
ization step actually reects which signals are thought
to be similar and what control actions should be lin-
early modeled. To tackle the dimensionality problem,
the number of signals must be reduced in a way that
does not degrade the validity of the resulting model.
The clustering is employed to determine groups of sim-
ilar signals and to compute a prototype signal for each
of the clusters (using Q). These prototypes Y0 form
a representation of the basic signal shapes among all
gene-pro�les. These prototypes are used to learn the
reduced linear model R between the prototypes. Such
a constrained model removes any ambiguity introduced
by the data and represents the basic interactions of the
underlying genetic network. After the linear model is
learned it can predict the signals of the prototypes Ŷ0

given the value of the prototypes at the �rst time-point.
From the estimated prototype signals an estimation of
the normalized signals X̂0 can be determined by means
of an `inverse' clustering step W. Similarly, an esti-
mate of the original signals X̂ can be determined by
employing an inverse normalization step. A more de-
tailed description of each part of the approach is given
in the subsections below.

Thresholding

Experimental observations (D'Haeseleer, Liang, & So-
mogyi 2000) have shown that the ratio of gene-
expression of the same genes taken from di�erent cul-
tures under similar conditions can vary up to an abso-
lute ratio of two, however when one culture is di�er-
entiated by a change in condition the gene-expression
ratios of a substantial part of the genes exceed a two-
fold and (some) even a �ve-fold ratio. Such observations
indicate that genes with pro�les that remain below an
absolute value of two are not signi�cantly expressed or
repressed and therefore do not participate in the reg-
ulation. The removal of such insigni�cant signals will
not only help to reduce the dimensionality problem, but
also avoid erroneous relationships when learning the lin-
ear model. A signal with a small amplitude contains a
large portion of measurement error that introduces lo-
cal distortions, such as additional peaks. Nevertheless,
the erroneous shape of that signal might be such that
when multiplied by a large weight, it closely predicts
one of the other signi�cant signals. In such cases the
linear model will erroneously infer a strong relation be-
tween a largely random signal and one of the signi�cant
signals. Therefore, in our approach all genes whose ac-
tivity level over all time instances is below a value of
two will be removed.

Normalization

In our approach, normalization is an important step as
it actually determines which characteristics of the origi-
nal signals are thought to express dissimilarity as well as
the regulatory action between genes. When two signals
share a characteristic considered to be important, these
two signals should be very similar after normalization.
For example, if the shape of the signals are thought to
be important this can be emphasized by normalizing the
signals with respect to their mean and variance. After
such normalization the Euclidean distance measure will
express the same similarity as the Pearson Correlation
Measure expresses when applied to the original signals.
Similarly, a linear model relating normalized signals is
equivalent to a quasi-linear model on the original sig-
nals. To simplify these model choices we only alter the
type of normalization and keep the Euclidean distance
measure and the basic linear model �xed. A visualiza-
tion of the normalized signals indicates what the user
exactly determines as being similar c.q. dissimilar, and
also depicts the actual control action of each gene that
is linearly modeled. The types of normalization can be
written as a combination of an additive term c1 and a
multiplicative term c2. The relation between original
signal x and normalized signal x0 is represented by the
following equation:

x0 =
x� c1
c2

(2)

The original signals can be reconstructed from the nor-
malized signals by means of a post-processing step that
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Figure 1: The modeling approach.

Type c1 c2 x0

None 0 1 x0 = x

Mean 1

T

PT

t=1 x(t) 1 x0 = x� c1
Variance 0

PT
t=1 x(t)

2 x0 = x

c2

Mean and Variance 1

T

PT

t=1 x(t)
1

T�1

PT

t=1 (x(t) � c1)
2 x0 = x�c1

c2

Table 1: Types of normalization

performs the inverse operation of Eq. (2). We distin-
guish between the types of normalization as depicted in
table 1.

The Linear Model

The linear model as de�ned in Eq. (1) serves as a repre-
sentation of the regulatory interaction between genes. If
the weights, being the parameters of the linear model,
and the activity levels of all genes at a certain time-
point are known, the activity levels of all genes at later
time points can be predicted. However, the weights are
not known and must be inferred from a set of mea-
surements of gene-activities at consecutive time points.
Such measurements can be represented in a so called
gene expression matrix,

X = [ xi;t j i 2 1; : : : ; N t 2 1; : : : ; T ] (3)

, where each row, denoted by xi, represents the gene-
pro�le of gene i taken over T time points. The t-th
column of X is denoted by x(t) = [ x1(t); : : : ; xN (t) ]

T

and determines the state of the system at time t. For
ease of notation we represent the linear model using
matrix and vector notation rather than by means of
Eq. (1).

x(t+ 1)T = x(t)T �R 8t = 1; : : : ; T � 1 (4)

The �rst goal is to �nd all weight-matrices R that are
consistent with our data and thus with Eq. (4), i.e.
using R and a given state will exactly determine the
next state. In general, the weight-matrix will be under-
constrained which means that there exist multiple so-

lutions which can be written as a combination of a par-
ticular solution P, a basis of homogeneous solutions H
and a set of free variables F, i.e.

R = P+H �F (5)

The particular solution P reects the information from
the data, i.e. it is one solution that satis�es Eq. (4)
(Note, many other solutions exist).

x(t+ 1)T = x(t)T �P 8t = 1; : : : ; T � 1 (6)

The homogeneous solution H � F reects the resulting
ambiguity in the data, i.e. it is that part of the weight-
matrix that reects the possible changes that do not
inuence the estimation of the signals in the data, i.e.

x(t)T �H �F = 0 8t = 1; : : : ; T � 1 (7)

Each column of the basis of homogeneous solutions H
determines how a particular change in one weight must
be compensated by the other weights in the same col-
umn3. The more columns H contains the more inde-
pendent directions of change are allowed. The set of
free variables F reects the degrees of freedom as each
element can be substituted with any particular value
without changing the estimation of the given data. For
a given data-set the particular and homogeneous solu-
tion can be found by Gaussian Elimination.
For actual biologically measured gene-expression ma-
trices, the amount of ambiguity, i.e. the number of

3If a weight from gene A to gene B is altered, the relations
of the other genes to gene B must compensate for the change
in order keep the prediction of gene B the same.



columns in H is large as the number of measurements
is signi�cantly less than the number of genes. Although
the ambiguity is exactly known it seems almost impos-
sible to represent it in a interpretable way. However,
when two genes react similarly one can group these
genes together and in this way decrease the ambigu-
ity in the system. When two signals, xi and xj , are
very similar and both signals can predict one of the
other signals xk accurately then removing one of the
similar signals still gives a good prediction4. In fact,
a good prediction is inuenced only by the sum of the
weights that correspond to the input of both signals,
i.e. ri;k + rj;k. This introduces an ambiguity in the
set of possible weight-matrices that can be made ex-
plicit by replacing each group of similar signals with a
prototype signal and learning the weights between the
prototypes instead of between the original signals. A
weight that is assigned to a prototype means that one
of the signals corresponding to that prototype should be
assigned that weight, but given the data no choice can
be made. This gives a motivation to perform clustering
in order to tackle the dimensionality problem without
degrading the interpretation of the resulting simpli�ed
rule-base and with minimal loss of the estimation per-
formance.

Clustering

The two main functions of clustering are to �nd groups
(clusters) of signals based on similarity and to conceptu-
alize the data by representing each cluster with a proper
prototype. The most important aspect of clustering is
the choice of distance measure. It basically expresses
the way similarity between signals depends on the val-
ues of the signals. Because the similarity of the signals
is part of the normalization step it is not longer nec-
essary to consider multiple distance measures and we
restrict ourselves to the Euclidean distance measure.
An important step which follows clustering is to repre-
sent each cluster with a proper prototype. In our view,
the choice of distance measure completely determines
how a proper prototype must be computed. A proto-
type is a signal that is the most similar to all signals it
represents. In terms of the distance measure, the rep-
resentative will be that signal y which has the minimal
root mean square (RMS) distance to all signals in the
cluster. For the Euclidean distance, this corresponds to
taking the mean of all signals in a cluster. The vari-
ance of all signals in a cluster represents the error that
is made by replacing the signals with their prototype,
also denoted by the within scatter of the clustering.
Note that the clustering process reduces the noise in
the signals due to the averaging of signals within the
same cluster.
Complete linkage hierarchical clustering based on the
Euclidean distance is performed. The number of
clusters is decreased until the system becomes over-

4The remaining signal can compensate for the removed
signal, because of its similar shape

constrained (i.e. the homogeneous solution becomes
empty). This clustering can be represented by means
of matrix multiplication. Transforming signals to pro-
totypes is performed by multiplying the normalized sig-
nals with matrix Q.

Y0 = X0T �Q (8)

, where Q is a (N � P ) matrix where each row corre-
sponds to each signal and each column corresponds to
each prototype. Each element qn;p of the matrix rep-
resents the contribution of the n-th signal to the p-th
prototype, with a mean prototype this becomes:

qn;p =

�
1=jCpj x̂n 2 Cp

0 otherwise
(9)

Cp is the set of all signals in cluster p. The inverse op-
eration of transforming prototypes into signals is per-
formed by multiplying the estimated prototype signals
with matrix W.

X̂0T = Ŷ0 �W (10)

, where W is a (P �N) matrix where the rows corre-
spond to the prototypes and the columns correspond to
the signals. Each element wp;n of the matrix represents
how the n-th signal can be reconstructed from the p-th
prototype. With a mean prototype the prototype itself
can directly represent the signal:

wp;n =

�
1 xn 2 Cp

0 otherwise
(11)

To validate the modeling approach two experiments
were performed. First, an arti�cial problem with a
known and structured weight-matrix is used to test the
capability of our method to uncover the right structure
and relations from generated signals. The second ex-
periment was done on a real yeast data-set on which
several analysis were performed.

Example: Arti�cial Problem

In this section, we discuss the experimental results that
were obtained on a simple arti�cial example, which
serves to illustrate the principles on which the modeling
approach is based. This example mimics the structure
present in large scale genetic networks: groups of genes
being co-regulated and thus exhibiting similar time re-
sponses.
As a �rst step, a linear system consisting of �ve genes
is constructed by choosing a particular (5 � 5) matrix
R5 = f r5i;jg. The superscript indicates the size. In
analogy with Eq. (4), the behavior of this system is
described by the following equation:

x(t+ 1)T = x(t)T �R5 (12)

Starting from any initial state this system will settle
into a stable steady state after a �nite time interval.
The speci�cally chosen weight-matrix is graphically de-
picted in Figure 2. From this small network, a network



Figure 2: Graphical representation of R5 used for the
arti�cial example. A black square at position (i; j) rep-
resents a positive control action of gene i on gene j, i.e.
ri;j > 0, while a negative control action is represented
by a white square. The size of a square is proportional
to the absolute size of the weight value.

of twenty-�ve genes was constructed by replicating the
simple system �ve times. This was achieved by con-
structingR25 in the following fashion: the (i; j)-th 5�5
sub-matrix in R25 was constructed by placing r5i;j on
the diagonal with all other positions in the sub-matrix
occupied by zeros. Figure 3 contains a graphical rep-
resentation of R25. The initial state of the genes is
determined such that each signal has an initial state
that is more similar to the initial states of the genes in
its group than to the initial states of the genes in the
other groups. Figure 4 depicts the �rst 20 time points of
the gene activity levels after such an initialization and
calculating subsequent time points using weight-matrix
R25. We will denote this gene-expression matrix by
X. The `grouping' of the signals within a subsystem
is quite apparent, and simulates groups of co-regulated
genes in a biological genetic network. If purely judged
on the number of signals (N = 25) and the number of
time points in the gene-expression matrix (T = 20) the
problem of estimating the values of R25 based on X is
under-constrained, i.e. in�nitely many solutions exist.
We estimated the model based on the methodology de-
scribed in the previous sections, but without pre- and
post-processing. More speci�cally, we employed com-
plete linkage hierarchical clustering and the Euclidean
distance measure to build a complete dendogram of the
signals. For each possible clustering, Ck, ranging from
a single cluster (k = 1, all signals in one cluster) to 25
clusters (k = 25, a single signal per cluster) the follow-
ing steps were performed:

1. The set of prototypes,Yk associated with the clusters
in Ck was determined by averaging the signals in each
cluster.

2. The weight matrix, R̂k, corresponding to each clus-

Figure 3: Graphical representation of R25: Expanded
from R5 for the arti�cial example.
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tering was determined from Yk . In the under-
constrained case, the particular solution was used;

3. Given the complete model Ck;Yk; R̂k, and an initial
state, x(0), approximations to the original signals can

be computed as: x̂k(t + 1) = f(Ck;Yk; R̂k;x(0)).
The following types of approximations were com-
puted:

� one-step approximations, i.e. each prediction is
based on the true state of the previous time in-
stance.

x̂os;k(t+ 1) = f(Ck;Yk ; R̂k;x(t));

t = 1; 2; : : : ; T � 1 (13)

� free-run approximations, i.e. predictions are based
only on the initial state

x̂fr;k(t+ 1) = f(Ck;Yk; R̂k; x̂fr;k(t));

x̂fr;k(0) = x(0); t = 1; 2; : : : ; T � 1 (14)

4. The mean squared error (MSE) value associated with
both the one step and free run approximation of the
original signals were computed and are denoted by
Eos;k and Efr;k respectively.

5. The weighted prototype MSE, Ewp;k, was also com-
puted; this error represents the free run prototype
prediction error, i.e. predicting the values of the pro-
totypes at the next time step in terms of the values
estimated on the preceding time step. The error of
each prototype was weighted by the number of signals
in its cluster.

Ewp;k =
Ep;k � jCk j

N
(15)

Ep;k = (
1

T � 1
)

TX
t=1

kŷfr;k(t)� x(t)k2 (16)

ŷfr;k(t+ 1) = g(R̂k; ŷfr;k(t));

ŷfr;k(0) = h(Ck;x(0)); t = 1; 2; : : : ; T � 1 (17)

Figure 5 depicts Efr;k; Eos;k and Ewp;k as a function
of k, the number of clusters. Apart from the expected
trend which shows an increase in signal approximation
error as the number of clusters decreases, the prototype
MSE, Ewp;k, remains zero as long as k � 5 clusters.
For fewer clusters the homogeneous solution is empty
as the system can no longer exactly predict the proto-
type signals. Consequently, only a single solution exists
that minimizes the MSE prediction error, i.e. the sys-
tem is over-constrained. Note that when judging the
system based purely on the number of time steps and
number of signals in the data set, we expected a non-
zero Ewp;k for k � 19 clusters, i.e. equal to one less
than the number of time points. However, due to the
repetitive structure in the system (�ve copies of the
same system), and the fact that the clustering enables
the solution process to exploit this structure, only �ve
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Figure 5: Error curves as a function of the number of
clusters employed in the model for the signals generated
from R25 in the arti�cial example.
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prototypes are required to exactly predict the signals.
The resulting model is depicted in Figure 6. It is quite

clear from this �gure that the resulting estimate R̂5 is
a good approximation of R5. However, at the same
time we should point out that interpretation of the R
matrix can, in some cases, be fairly di�cult. For exam-
ple, consider prototype 5 directly above column 5 of the
R̂5 matrix in Figure 6. The large value of r5;5 implies
that it has a large positive relation with itself, which is
understandable, However, large values for r2;5 and r3;5
imply that these prototypes are also involved in pro-
ducing the time response of prototype 5. Such subtle
interactions are fairly di�cult to comprehend by look-
ing at the signals. In any event, this arti�cial example
illustrates that the approach holds promise, since it en-
abled us to extract the essential (original) structure of
a system consisting of co-regulated genes.

Experiment: Yeast data-set

The analyzes described in this section were carried out
on the gene expression pro�les extracted from the 2467
genes in the budding yeast S. cerevisiae (Eisen et al.
1998). The dataset consists of several sub-sets collected
under di�erent conditions: mitotic cell division cy-
cle, sporulation and temperature and reducing shocks.
Since the approach described in this paper models the
time behavior of the genes, appropriate external inputs
should be included to model changing external condi-
tions, if the concatenation of the sub-sets were to be
employed as input data. Since such inputs are not in-
cluded in our model yet, we can only apply the approach
on a single sub-set at a time.

Thresholding:

In a previous section it was motivated why genes with
expression pro�les which never exceed �2 should be
considered as `insigni�cant' and why such genes should
be removed from the data set. Removal of all such
expression pro�les reduces the sizes of all the data sets
dramatically and consequently alleviates the dimension-
ality problem. For the ALPHA subset which consists of
18 time points, 45 genes remain as signi�cant signals,
for the CDC15 subset consisting of 14 time points 113
genes remain as signi�cant signals.

Normalization:

In order to investigate the e�ects of the di�erent kinds
of normalization, the same experimental procedure as
in the arti�cial experiment was employed for each of the
Eisen sub-sets. For each subset the prototype free run
error remained zero as long as the number of clusters
were equal to or higher than one less than the number
of time points (k = T � 1). That particular number of
clusters k = T � 1, corresponds to the solution involv-
ing the largest number of clusters for which the prob-
lem is over-constrained, i.e. the homogeneous matrix is
empty. Figure 7 depicts the one-step MSE (Eos;T�1) at
this point as a function of all the di�erent data sets and
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Figure 7: MSE for all data sets and the four kinds of nor-
malization. The MSE is computed for the over-constrained
model with the smallest MSE and always corresponded to
that model where the number of clusters equalled the num-
ber of state-transitions in the data set.

kinds of normalization5. From Figure 7 it is quite ap-
parent that `mean-variance' normalization results in the
smallest MSE for all data sets except for ALPHA, ELU
and COLD, where the mean normalization is slightly
better. The CDC15 and ALPHA subsets were chosen
for further experimentation since they contain a rela-
tively large number of time points (15 and 18 resp.).

Fitting the linear model on the CDC15
subset:

The same experimental procedure outlined in the previ-
ous section was employed for this data set, resulting in
the error curves depicted in Figure 8. From this �gure
it is clear that Ewp becomes zero at 14 clusters, indicat-
ing that in order to capture the intrinsic dimensionality
a model with at least 14 and probably more prototypes
is required. Note that given only 15 time points it is the
best we can do. In order to determine the exact intrin-
sic dimensionality more time points are required. The
resulting model is depicted in Figure 9. The R matrix
is, as stated earlier, not always easily interpretable due
to the many signals that contribute to the prediction
of a single signal. This phenomenon corresponds to a
column with multiple large values, such as columns 2, 9
and 14. For example, the ninth prototype is constructed
by employing signi�cant contributions from at least six
other prototypes. However, columns with few large val-
ues correspond to genes that are inuenced by only a
small number of prototypes. For example, prototype
3 is primarily inuenced by prototype 5. This makes
sense as prototype 3 matches a one-step delayed ver-
sion of prototype 5. Similarly, a row with many (few)
large values indicates a prototype that regulates many

5The free-run error is exactly the same as the one-step
error as each intermediate state is exactly estimated.



14
13

12
11

10
9

8
7

6
5

4
3

2
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 9: Graphical representation of the model for 14 clusters on data set CDC15 using mean variance normalization.
The column of plots on the far left hand side depicts the normalized time of the 113 genes that remain in the data set after
thresholding, grouped in 14 clusters. The next column of plots depicts the associated prototypes. The 14 x 14 square represents
the associated R matrix. For visualization purposes each column is normalized with respect to the maximum value of that
column.



0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

number of clusters

M
S

E
free run MSE          
one step MSE          
weighted prototype MSE
Within scatter        

Figure 8: Error curves as a function of the number of clus-
ters employed in the model for the CDC15 dataset.

(few) other genes. Examples of such prototypes are pro-
totypes 7, 10 and 11 which regulate many genes, while
prototype 12 has hardly any inuence on other genes.

Fitting the linear model on the Alpha
sub-set:

The same procedure was also applied to the Alpha-
subset, which is the subset containing the largest num-
ber of time points. The resulting error curves are shown
in Figure 10. Once again the prototype error remains
zero when the number of clusters exceeds the number
of time points. The resulting model for 17 clusters is
depicted in Figure 11 when using mean variance nor-
malization. A striking characteristic of the R matrix is
the fact that prototypes 1, 7 and 17 strongly inuence
other genes. Moreover, prototypes 7 and 17 have almost
exactly the same inuence on all other prototypes. This
is probably due to the fact that a summation of these
two prototypes results in a more or less constant sig-
nal which plays a role similar to a bias term. Another
characteristic of this model is the `peakyness' of the pro-
totypes. For example, prototypes 5, 7, 15, 16 and 17.
This stems from the fact that mean variance normal-
ization was employed, which emphasizes small peaks in
the original signals. To illustrate the e�ect of normal-
ization, we also obtained a model without normaliza-
tion, which is depicted in Fig. 12. From this �gure, we
observe that there are fewer prototypes that contain a
single peak. In addition, the similarity between rows,
which was observed in Fig. 11, has disappeared and is
more sparse than the matrix obtained with mean vari-
ance normalization. Table 2 lists the function names
associated with the genes in the clusters. There are
two dominant clusters, namely, Cluster 2 which con-
sists mainly of genes involved in MATING and Cluster 7
which consists entirely of CHROMATIN STRUCTURE
related genes. There is one prototype, namely Pro-
totype 2 (MATING), which has a strong inuence on
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Figure 10: Error curves as a function of the number of
clusters employed in the model for the ALPHA data-set.

many other prototypes. There are also several columns
which contain a single large value indicating that those
genes are inuenced primarily by a single prototype.
For example, Prototype 14 (MATING) is strongly inu-
enced by Prototype 2 (MATING), which can be easily
understood (purely based on signal shapes) since the
down regulation of Prototype 14 is preceded by down
regulation of Prototype 2. Another interesting example
involves Prototypes 7 (CHROMATIN STRUCTURE)
and 13, where a single large value in column 7 indicates
that Prototype 7 can be well predicted by the behaviour
of Prototype 13 (either PROTEIN GLYCOSYLATION
or VANADATE RESISTANCE). This follows from the
fact that Prototype 7 is a time delayed version of Pro-
totype 13.
When interpreting such results, human beings typi-
cally focus on pair-wise comparisons of in- and outputs.
When more than two control actions are responsible for
a signal's response, the results are often hard to validate
by comparing pairs of signals involved. One should bear
in mind that a linear model is not primarily intended to
be interpreted in such a way. It should also be borne in
mind that starting from 2467 genes now only 14 or 17
basic regulatory actions remain! Unfortunately, in none
of the sub-sets the number of measured time points is
enough to discover the exact intrinsic dimensionality.
This is indicated by the fact that the prototype error
was only zero when the number of clusters exceeded
one less than the number of time points. If the intrinsic
dimensionality were lower, the prototype error would
have been zero for a smaller number of clusters, as il-
lustrated in the arti�cial problem.

Summary

In this paper we presented a new methodology for mod-
eling genetic networks that employs clustering to tackle
the dimensionality problem and a linear model to repre-
sent the relationships between the resulting prototypes.
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Figure 11: Graphical representation of the model for 17 clusters on data set ALPHA using mean variance normalization.
The column of plots on the far left hand side depicts the normalized time of the 45 genes that remain in the data set after
thresholding, grouped in 17 clusters. The next column of plots depicts the associated prototypes. The 17 x 17 square represents
the associated R matrix. For visualization purposes each column is normalized with respect to the maximum value of that
column.
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Figure 12: Graphical representation of the model for 17 clusters on data set ALPHA using no normalization. The column of
plots on the far left hand side depicts the normalized time of the 45 genes that remain in the data set after thresholding, grouped
in 17 clusters. The next column of plots depicts the associated prototypes. The 17 x 17 square represents the associated R
matrix. For visualization purposes each column is normalized with respect to the maximum value of that column.

In order to alleviate the dimensionality problem the
number of signals must be dramatically reduced, such
that the resulting generalized model is a valid represen-
tation of the basic regulatory interactions. This can not
be done in an ad hoc fashion. However, clustering can
be employed to perform such a reduction in a biologi-
cally sound fashion. This stems from the fact that clus-
tering combines similar signals in a way that models re-
dundancy and imposes limited connectivity; character-
istics which are believed to be present in biological ge-
netic networks. Moreover, similar signals will introduce
ambiguity in the set of possible solutions because their
regulating behaviour cannot be distinguished based on
the data. The validity of our approach is illustrated by
applying it on an arti�cial problem were it is shown that
the method recovers the structured underlying network
from an under-constrained set of signals. Consequently,
some preliminary experiments were performed on the
Eisen data-set. The results on two sub-sets, the AL-
PHA and CDC15 subsets, were presented in this pa-
per. The validity of any interpretation based on the
results obtained with the linear model is obviously con-
ditioned on the assumption that the linear model faith-
fully captures the behaviour of the underlying network.
While more complex models, such as di�erential equa-
tions may be more biologically plausible, the estimates
of the parameters are highly unreliable. The approach
outlined in the paper, which combines clustering with

linear modeling, addresses the dimensionality problem
directly, thus rendering the estimated parameters more
reliable. In our opinion, this approach strikes a good
balance between model complexity and parameter va-
lidity.
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